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1. Summary 

Malignant gliomas are highly lethal tumors of the central nervous system (CNS). The most 

common glioblastomas (GBM) are considered to be immunologically inert (“cold”) tumors, 

characterized by a highly immunosuppressive microenvironment and low potential for activation 

of the inflammatory and anti-tumor responses. Glioma-associated macrophages (GAMs) are 

myeloid cells accumulating in GBMs that comprise the major population of immune cells 

infiltrating gliomas. Multiple studies demonstrated that GAMs instigate tumor-induced 

immunosuppression, promote invasion, and support tumor growth.    

Although the roles of GAMs in tumor progression have been widely investigated, the 

substantial heterogeneity of this population impeded its precise functional characterization. 

GAMs may originate from two cell lineages: specialized macrophages of the brain – microglia, 

and macrophages derived from the circulating monocytes that arrive at the tumor from the 

periphery – monocyte-derived macrophages (MDMs). Recent reports indicated that these two 

cell types can have different functions in glioma development, although studies on the specific 

roles were limited due to the lack of discriminating markers. Single-cell RNA sequencing 

(scRNA-seq) allows addressing the issue of cell heterogeneity, as it provides transcriptomic 

analysis of every single-cell in a mixture of thousands of different cells. Thus, information about 

diverse subpopulations is retained, in contrast to bulk methods where the gene expression is 

averaged over a total number of cells, and the information about the cell diversity is lost. 

In this study, the myeloid (CD11b+) compartment of the glioma microenvironment was 

investigated with the scRNA-seq and Cellular Indexing of Transcriptomes and Epitopes by 

sequencing (CITE-seq). CITE-seq combines the scRNA-seq with a simultaneous protein 

profiling. Based on the single-cell expression profiles, novel markers for the separation of 

microglia and MDMs were identified and validated (Tmem119 and Gal-3). Microglia and MDMs 

upregulated similar transcriptional networks in the glioma microenvironment. However, the 

response of MDMs was more pronounced. MDMs showed three monocyte-to-macrophage 

differentiation stages. The monocytic signature was associated with the highest expression of 

interferon-response genes, whereas differentiated macrophages upregulated factors involved in 

supporting tumor growth (e.g. Trem2, Apoe, Cd9, Arg1 genes) and immunosuppression (PD-L1 

protein, IL18bp and Il1rn genes). Additionally, this study demonstrated for the first time the 

sex-dependent differences in induction of MHCII complex and interferon-response genes in 

microglia and MDMs upon glioma-induced activation. An elevated level of MHCII in males and 

more pronounced upregulation of the interferon-response genes in females may constitute 

sex-dependent differences in incidence and outcomes of malignant gliomas found in humans.   
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2.  Streszczenie 

Glejaki złośliwe są guzami ośrodkowego układu nerwowego (OUN) powodującymi bardzo 

wysoką śmiertelność. Pomimo dużej liczby komórek układu odpornościowego gromadzących 

się w guzie, glejaki wykazują szereg mechanizmów tłumienia odpowiedzi 

przeciwnowotworowej i są powszechnie uznawane za immunologicznie „zimne” guzy. 

Makrofagi naciekające glejaki (ang. Glioma Associated Macrophages  - GAMs) są komórkami 

mieloidalnymi, które stanowią najliczniejszą populację komórek odpornościowych 

gromadzących się w tych guzach. Wyniki wielu badań pokazały, że komórki te zamiast 

inicjować odpowiedź przeciwnowotworową, wspierają inwazyjność oraz uczestniczą 

w immunosupresji indukowanej przez guz przyczyniając się do wzrostu guza..  

GAMs stanowią różnorodną populację komórkową, na którą składają się mikroglej oraz 

naciekające monocyty i makrofagi, co znacząco utrudnia funkcjonalną charakterystykę tych 

komórek. Mikroglej to wyspecjalizowane, rezydentne komórki mieloidalne zasiedlające mózg 

we wczesnej fazie rozwoju embrionalnego. Natomiast, makrofagi różnicują z monocytów (ang. 

Monocyte-Derived Macrophages, MDMs), napływających do guza z obwodu, a warunkach 

homeostazy występują w OUN w śladowej liczbie. Ostatnie badania wykazały, że te dwie 

populacje mogą pełnić odmienne funkcje w procesie wzrostu guza.  

Sekwencjonowanie transkryptomu pojedynczej komórki (ang. single-cell RNA sequencing 

– scRNA-seq) pozwala dogłębnie zbadać różnorodność komórek w populacji GAMs, gdyż 

umożliwia analizę transkryptomu każdej pojedynczej komórki w mieszaninie tysięcy różnych 

komórek. Dzięki temu, informacja na temat poszczególnych subpopulacji zostaje zachowana, 

w przeciwieństwie do standardowych metod RNA-seq, w których profil ekspresji różnych 

komórek jest uśredniany, a informacja na temat różnic pomiędzy podgrupami komórek zostaje 

stracona.   

W niniejszej pracy, komórki mieloidalne naciekające doświadczalne mysie glejaki zostały 

scharakteryzowane przy użyciu metody scRNA-seq. Dodatkowo, wykorzystana została metoda 

łącząca scRNA-seq z jednoczesnym oznaczeniem panelu białek powierzchniowych 

(ang. Cellular Indexing of Transcriptomes and Epitopes by sequencing – CITE-seq). Dzięki 

uzyskanym profilom ekspresji pojedynczych komórek, zidentyfikowane zostały nowe markery 

komórkowe (Tmem119 i Gal-3) pozwalające rozdzielić populację mikrogleju oraz pochodzące 

ze szpiku populacje  MDMs. Wykazano, że mikroglej i MDMs aktywują ekspresję podobnych 

grup funkcjonalnych genów w mikrośrodowisku glejaka, jednakże w MDMs ekspresja 

indukowanych genów była silniejsza . Wśród populacji MDMs wykryto obecność subpopulacji 

o różnym stopniu zróżnicowania: monocyty, stadium przejściowe pomiędzy monocytami 
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i makrofagami oraz zróżnicowane makrofagi. Monocyty charakteryzowały się najwyższą 

ekspresją genów odpowiedzi na interferon (co sugeruje funkcje zapalne i 

przeciwnowotworowe), natomiast zróżnicowane makrofagi wykazały podwyższoną ekspresję 

czynników biorących udział we wspieraniu nowotworzenia (np. geny Trem2, Apoe, Cd9, Arg1) 

oraz immunosupresji (białko PD-L1 i geny IL18bp, Il1rn ). Dodatkowo, wyniki niniejszej pracy 

po raz pierwszy wykazały zależne od płci różnice w poziomie kompleksu MHCII oraz ekspresji 

genów indukowanych przez interferon podczas aktywacji komórek mieloidalnych w 

mikrośrodowisku guza. Komórki męskie miały wyższy poziom kompleksu MHCII, natomiast 

komórki żeńskie wykazały zwiększoną ekspresję genów odpowiedzi na interferon. Stwierdzone 

różnice (potwierdzone także na materiale od pacjentów z glejakami) mogą mieć wpływ na 

obserwowane różnice w częstości występowania glejaków oraz w odpowiedzi na terapię 

pacjentów różnej płci.  
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3. Introduction 

3.1. OVERVIEW OF MALIGNANT GLIOMAS 

3.1.1. Classification and epidemiology 

The primary brain tumors originate from the neural stem cells or progenitor cells of the 

central nervous system (CNS). Malignant tumors constitute one-third of all primary brain 

tumors and occur at the yearly incidence rate of 7 per 100 000 1. It translates to 1 in 160 people 

developing a malignant brain tumor in a lifetime (lifetime risk 0.62%) 1.  

The most abundant type of malignant primary brain tumor is glioma accounting for 80% 

of malignant tumors (Figure 3.1). Gliomas encompass a broad category of diverse tumors 

originally classified based on their microscopic similarity to the precursor cells of glial lineages 

- the putative cells of glioma origin. The histopathological glioma classification relied on the 

morphological resemblance of the neoplastic cells to healthy brain cells, assigning tumors with 

astrocytic features as astrocytomas and of oligodendroglial features as oligodendrogliomas 2. 

The classification of CNS tumors by the World Health Organization (WHO) published in 2016, 

revised this approach and included molecular markers in addition to the histological 

characterization 3. Based on the growth pattern and genotype diffuse gliomas have been 

grouped together and further defined with both histological and molecular characteristics. The 

diffuse gliomas are characterized by a highly infiltrative growth pattern resulting in the 

migration of neoplastic cells within the brain parenchyma. In adults, the diffuse gliomas 

Figure 3.1. Distribution of primary brain and other CNS tumors. From CBTRUS Statistical report on 

415 411 cases from the United States in years 2013-2017 1. 
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constitute 80% of all malignant gliomas and encompass WHO grade II and III 

oligodendrogliomas, grade II-III astrocytic tumors, and grade IV glioblastomas (GBM). The 

non-diffuse gliomas with more apparent tumor borders encompass pilocytic astrocytoma (grade 

I) and ependymoma (grade II) 3.  

Despite decades of research, the therapeutic options for malignant gliomas are very limited, 

which is reflected by high mortality rates. The most aggressive type – GBM, which constitutes 

more than half of all gliomas, is primarily diagnosed at an older age (median of 65 years), and 

shows the worst median survival of 15 months 1,4. WHO grade II and III gliomas are associated 

with better survival – 5-7 years in grade II, 2-3 years in grade III, and are more frequently 

diagnosed in younger patients (median 34 and 39 years, respectively) 1,5. The therapeutic 

intervention is largely restricted to surgical resection and chemo-/radiotherapy. Multiple 

therapies have been tested in clinical studies, yielding a very limited improvement of patient 

outcomes 6.  

3.1.2. Molecular characterization of diffuse gliomas 

Diffuse gliomas are associated with substantial genetic heterogeneity that affects 

characteristics of the tumor and its microenvironment influencing responses to therapy and 

patient survival. As of 2016, the WHO glioma classification was largely redefined by the 

introduction of molecular parameters that provided additional factors for predicting clinical 

outcomes 3. The genomic context allows for a more precise definition of glioma subtypes as 

demonstrated in Figure 3.2 7. 

A key genetic alteration of the molecular classification of diffuse gliomas is the mutational 

status of genes encoding isocitrate dehydrogenases - IDH1 and IDH2. IDH catalyzes the 

oxidative decarboxylation of isocitrate producing α-ketoglutarate (α-KG). The mutation occurs 

typically at codon 132 in IDH1 (90% of cases) and codons 140 or 170 in IDH2 8. This nucleotide 

substitution results in arginine being replaced with histidine, leading to a gain-of-function, as 

the mutated enzyme reduces the α-KG to 2-hydroxyglutarate (2-HG) 8. The 2-HG accumulation 

exerts the inhibitory effect on histone and DNA demethylases, leading to a hypermethylation 

phenotype (G-CIMP – glioma CpG island methylator phenotype) and alterations of histone 

modifications that largely affects epigenetic and transcriptional pattern 9,10. As a consequence, 

the IDH1/2 mutation has a profound effect on clinical outcome, as it is associated with improved 

patient prognosis 11,12 . In addition, IDH1/2 mutation is found in 70% of WHO grade II and III 

gliomas and only in 10% of GBMs (mostly recurrent GBMs) 8,13,14. The IDH-mut gliomas are 
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Figure 3.2 | Subtypes of adult diffuse glioma. Based on an integrative analysis of 1 122 adult gliomas. The 

size of the circles reflects the percentage of samples in each group. Figure from Ceccarelli et al. 2016 7. 
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further divided into two groups: 1) exhibiting 1/19q co-deletion and the  TERT promoter 

mutation, 2) harboring ATRX and TP53 mutations; whereas cases with the combination of those 

two variants are very rare.  

IDH wild type (IDH-wt) GBMs were found to express three major transcriptional profiles: 

classical, proneural, and mesenchymal 15,16. The classical subtype is associated with 

amplification of the EGFR gene (coding for Epithelial Growth Factor Receptor), which 

frequently co-occurs with the deletion of CDKN2A (coding for Cyclin Dependent Kinase 

Inhibitor 2a), and lacks TP53 mutations. The proneural subtype exhibits a higher rate of 

PDGFRA amplification (encoding Platelet Derived Growth Factor Receptor Alpha) and 

increased frequency of TP53 mutations as compared with other GBMs, which is associated with 

increased transcription of genes involved in oligodendrocyte (PGGFRA, NKX-2, OLIG2) and 

proneural development (SOX, DCX, DLL3, ASCL1, TCF4). The third, mesenchymal subtype is 

associated with deletion or mutation of NF1 (encoding Neurofibromathosis 1) that frequently 

co-occurs with a PTEN mutation (encoding Phosphatase and Tensin Homolog) and exhibits 

increased expression of mesenchymal and astrocytic markers (CHI3L1, CD44, MERTK). This 

expression pattern might be reminiscent of epithelial-to-mesenchymal transition that has been 

associated with dedifferentiated tumors 17. The three transcriptional GBM subtypes yield 

considerable differences in patient survival. The proneural type is associated with the best 

prognosis and the mesenchymal type with the worst prognosis, whereas the classical type shows 

the best response to aggressive therapy 15.  

Importantly, GBMs are not uniform, but are composed of cells exhibiting various molecular 

subtypes. Studies employing multiple sampling of distinct tumor regions and single-cell RNA 

sequencing (scRNA-seq) demonstrated that GBMs are rather formed by a mixture of neoplastic 

cells with a variable contribution of the three subtypes 16,18,19. Further analysis at the single-cell 

level pointed to the presence of four cellular states: neural-progenitor-like (NPC), 

oligodendrocyte-progenitor-like (OPC), astrocyte-like (AC), and mesenchymal-like (MES). 

Importantly, the defined states were consistent with previously defined molecular subtypes, as 

the NPC, OPC, AC, and MES states were associated with the following genetic alterations 

CDK4, PDGFRA, EGFR, and NF1, respectively 16,18,19. 

The detailed classification of neoplastic cells demonstrated that each tumor exhibits 

a unique combination of cellular states. However, all tumors show recurrent signatures of the 

observed states. Therefore, it was suggested that GBM heterogeneity might be partially 

explained by the patterns of genetic alterations and the resulting cellular states 16,18,19.  
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3.2. THE IMMUNE ENVIRONMENT OF MALIGNANT GLIOMAS 

3.2.1. Glioblastomas – immunologically “cold” tumors 

Malignant gliomas are considered to be immunologically inert tumors characterized by 

a highly immunosuppressive microenvironment and low potential for activation of the 

inflammatory and anti-tumor responses. This is partly attributed to the CNS being an 

immune-privileged site and to the presence of the blood-brain barrier, which separates the CNS 

from the body. Still, gliomas are massively infiltrated by the immune system cells that can 

constitute up to 30 % of tumor mass 20. However, the immune population is dominated by 

myeloid cells, especially the brain-resident microglia, and monocytes/macrophages infiltrating 

from the periphery, whereas infiltration of activated T cells is rather low. 

The immune escape of malignant gliomas has been found to result from several 

mechanisms. Tumor cells secrete factors recruiting and modulating the function of certain 

immune populations e.g. cytokine CCL2 that attracts monocytes, dendritic cells (DCs), natural 

killer (NK) cells, and T cells; cytokines CCL2/CCL22 that recruit regulatory T cells;  

transforming growth factor-beta (TGF-β) that blocks cytotoxic T lymphocytes; prostaglandin 

E2 (PGE2) that downregulates the production of inflammatory Th1 cytokines, upregulates Th2 

immunosuppressive cytokines and inhibits anti-tumor activity of NK cells 21,22. NK cells are 

capable of killing malignant cells, which downregulate major histocompatibility complex 

(MHC) I and thus overcome cytotoxic T cell recognition. It has been found that NK cells can 

efficiently lyse cancer stem cells in GBMs. However, NK cells were also shown to contribute 

to the glioma stem cell differentiation, and the differentiated tumor cells show resistance to the 

NK-mediated cytotoxicity 23. In addition, eliciting adaptive immune response is blocked due to 

e.g. ineffective presentation of tumor antigens to T cells by antigen presentation cells (APC), 

accumulation of T regulatory cells that produce interleukins 10 and 35 (IL-10, IL-35) and 

TGF-β, which have an inhibitory effect on the response of the cytotoxic T lymphocytes 24. 

Additionally, the T cell infiltration to the brain is impeded by the T cells sequestration in the 

bone marrow 25. Whereas T cells that successfully migrated to the tumor mass are frequently 

hypo-responsive due to chronic antigen exposure, which is defined as T cell exhaustion. 

Exhausted T cells in GBMs upregulate many immune checkpoint proteins: programmed cell 

death protein 1 (PD-1), T cell immunoglobulin and mucin domain-containing 3 (TIM-3), 

lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains 

(TIGIT), and CD39. Whereas the ability to produce proinflammatory factors e.g. interferon 

gamma (IFN-γ), interleukin 2 (IL-2), and tumor necrosis factor-alpha (TNF-α), is diminished 26.  
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The immune checkpoints are crucial elements of self-recognition, which are used by 

neoplastic cells to impede the recognition of tumor antigens and block T cell activation. 

Therefore, immunotherapy based on the immune checkpoint blockade (ICB) aims at blocking 

the interaction of tumor cells and immune checkpoints, facilitating the reactivation of 

tumor-specific immune responses. The ICB therapy improved patient outcomes in several 

cancer types, including brain metastases of melanomas and non-small lung cancer 27,28. 

Regarding GBM, a series of recent clinical trials tested the efficacy of PD1 inhibitor (anti-PD1, 

Nivolumab) in monotherapy and combination with anti-angiogenic agent Bevacizumab 

(Check-Mate 143, NCT02017717), as well as in combination with radiotherapy (Check-Mate 

498, NCT02617589) and both radio- and chemotherapy (Check-Mate 548, NCT02667587). 

The results were disappointing, as neither of the treatment schemes improved the median 

survival of GBM patients.  

There is an ongoing discussion regarding the major factors impeding a successful 

reactivation of the anti-tumor immunity in malignant gliomas. Malignant gliomas exhibit broad 

interactions with the components of their microenvironment and the tumor progression heavily 

relies on the support of non-neoplastic cells. Unraveling the complexity of the immune 

microenvironment has been pointed as essential for improving our understanding of glioma 

pathobiology.  

3.2.2. The role of Glioma Associated Macrophages in supporting tumor growth 

The glioma microenvironment is rich in non-neoplastic cells including stromal, 

endothelial, and immune cells encompassing microglia, monocytes/macrophages, DCs, T cells, 

B cells, and NK cells. However, the glioma-associated microglia and macrophages (GAMs) 

constitute the most abundant population of immune cells in the glioma microenvironment29.  

Despite the high influx of the immune system cells to the tumor-bearing brain 

parenchyma, GAMs do not counteract tumorigenesis, but rather promote tumor invasion. Their 

accumulation increases with a tumor grade and high numbers of amoeboid, activated GAMs 

are associated with poor patient prognosis 30. GAMs are recruited to the tumor niche and 

undergo tumor-directed education. As a result, GAMs contribute to tumor progression and 

evasion of the anti-tumor immune response via e.g. releasing immunosuppressive cytokines, 

inhibiting cytotoxic responses of NK cells, and blocking the activation of CD4+ T cells 

(reviewed in 31). 
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In the Laboratory of Molecular Neurobiology, it was previously shown that 

the glioma-derived factors drive the pro-tumorigenic transformation of microglia in vitro and 

that the reprogramming of myeloid cells (CD11b+/Iba1+) to the glioma-associated phenotype 

occurs in experimental rodent gliomas. GAMs fail to induce inflammatory signaling 

pathways32, exhibit suppressed anti-tumor immune responses33, and promote proliferation and 

invasion of glioma cells34,35. Summarizing, microglia and macrophages exhibit impeded 

anti-tumor responses and promote glioma growth and invasion. 

3.2.3.  Dual origin of glioma-associated macrophages 

The GAMs term has been coined to collectively describe both microglia and macrophages 

that infiltrate gliomas. It reflects terminology used for peripheral macrophages where those 

cells are called tumor-associated macrophages - TAMs. Multiple studies have already shown 

that GAMs are not a uniform population and might consist of phenotypic subpopulations 36–39.  

Microglia are specialized CNS myeloid cells that originate from hematopoietic precursors 

- erythromyeloid progenitors (EMP) developing in an early embryonic life in the yolk sack 40. 

EMPs give rise to microglial progenitors that migrate to the brain starting from the embryonic 

day 9.5, until the formation of the blood-brain-barrier 41. Microglia are long-living cells capable 

of self-renewal that is independent of bone marrow and circulating precursors 40,42. In contrast, 

GAMs of the monocytic lineage that infiltrate gliomas originate from circulating monocytes 

that renew continuously from the hematopoietic stem cells (HSC) residing in bone marrow 43,44. 

HSCs are capable of giving rise to all blood cell lineages such as red blood cells, lymphocytes, 

and myeloid cells like monocytes and macrophages 45.  

Microglia and monocyte-derived macrophages (MDMs) exhibit high phenotypic-plasticity 

that might be shaped by the microenvironment. High adaptation potential was evidenced by the 

chromatin landscape reprogramming, which is induced for both bone marrow (BM) 

macrophage precursors and tissue-resident macrophages upon transplantation to the new 

environment. The BM-derived macrophage transplants acquired the majority of the enhancer 

histone modifications specific for tissue-resident macrophages 46. Moreover, Gosselin et al. 

(2017) showed that microglial transcriptional networks change in an environment-dependent 

manner and suggested that transcription regulatory elements are modulated by 

disease-associated microenvironmental perturbations 47.  

Glioblastoma forms a highly influential microenvironment that profoundly alters the 

microglia/macrophage phenotypes. Thus, both brain resident microglia and infiltrating MDMs 
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found in the glioma microenvironment might undergo a phenotypic transformation that 

dominates over their origin. Until recently, insights into specific microglia and macrophage 

roles in glioma progression have been largely impeded by the lack of reliable markers that could 

specifically separate microglia and MDMs.  

3.2.4. Challenges in studying functions of microglia and macrophages in gliomas 

Many researchers attempted to elucidate the function of GAMs by isolating the GAM 

population from human and rodent gliomas and performing analyses of their transcriptomes. In 

those studies, CD11b+ cells were isolated by immunomagnetic beads or sorted by flow 

cytometry, as CD11b is a pan-marker of myeloid populations 36,37,48–50. We have recently 

analyzed all of those studies (including ours) and demonstrated a lack of consistency in the 

GAM transcriptomic signature across different laboratories, human samples, and animal 

models 50. We compared the gene expression profiles of GAMs derived from mouse 36,50 and 

rat 48 gliomas, and patient-derived tumor samples 37,49. Those profiles showed remarkably low 

similarity, as only two genes – Gpnmb and Tgm2, (encoding Glycoprotein non-metastatic B 

and Transglutaminase 2, respectively) were identified in all investigated bulk-transcriptome 

studies. Moreover, the comparison did not yield consistent microglia phenotypes that could be 

classified according to the previously reported gene signatures – classical M1, alternative M2, 

and M2 a, b, c subtypes (reviewed in 51).  

The discrepancies in the field likely emerge from the diversity of cell populations 

cumulatively referred to as GAMs, and limited possibilities to reliably separate microglia and 

MDMs in the glioblastoma-bearing brains. The most commonly used strategy was Fluorescence 

Activated Cell Sorting (FACS) for CD11b+CD45low (microglia) and CD11b+CD45high (MDMs), 

which is based on the work on the irradiation bone marrow chimeras 52,53. However, CD11b 

is a pan-myeloid marker expressed in microglia, monocytes, macrophages (including CNS 

border associated macrophages), NK, and DCs. Thus, this strategy failed to reproduce the clear 

separation of subpopulations in cells sorted from human gliomas 54. Moreover, CD45 antigen 

was reported to efficiently separate microglia and MDMs only under homeostatic conditions. 

Once the two cell populations start to infiltrate the tumor, the expression of CD45 is upregulated 

by microglia impeding reliable separation 55.  

Studies investigating microglia and MDMs ratio across glioma stages (based on CD11b+ 

CD45high/low gating) showed an increasing proportion of MDMs that constitute a sparse 

population at an early stage (1 week after tumor-induction) and greatly outnumber microglia at 
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nearly terminal stage (3.5 weeks) 56,57. Those findings are not conclusive since they relayed on 

the CD45 gating. However, they point to differential roles of microglia and MDMs at 

subsequent glioma stages, which might be additionally associated with the gradual 

transformation of microglial cells to the CD45high population.  

One of the most reliable strategies for microglia and MDMs separation employs a lineage 

tracing relaying on cell turnover differences of microglia and MDMs, in which administration 

of tamoxifen induces tdTomato expression in CX3CR1 (CX3C chemokine receptor 1) positive 

cells (all myeloid cells). This expression is lost by rapidly self-renewing macrophages, while 

long-lasting microglia remain TdTomato positive 58. Using this approach, Bowman et al. (2016) 

determined transcriptomic signatures that distinguish brain-resident microglia and 

bone-marrow-derived macrophages. Authors demonstrated differences in active chromatin 

regions and claimed distinct activation states of those cell populations59. However, looking at 

the total number of genes in which differential expression was induced by the tumor (normal 

microglia vs all GAMs), a large fraction (over 1,000 genes) was common for microglia and 

MDMs. A substantially smaller number was found to be specific for microglia (around 100 

genes) and MDMs (around 300 genes) suggesting the convergence of transcriptomic changes 

occurring in the glioma-infiltrating immune cells 59. The authors also proposed a CD49d (cluster 

of differentiation 49 d) as a discriminatory factor between microglia and MDMs, as CD49d  

was expressed exclusively by infiltrating macrophages 59. CD49d is an integrin subunit alpha 4 

chain, which constitutes one of the chains of alpha 4 beta 1 (very late activating antigen-4 

[VLA-4]) and alpha 4 beta 7 integrins. The finding was then reproduced on human clinical 

GBM samples 60.  

Bennet et al. (2016) reported the microglia gene expression profile that provided several 

marker candidates for microglia under homeostatic conditions: Tmem119, Fcrls, P2ry12, 

P2ry13, Gpr34, Gpr84 61, out of which expression of Tmem119 was showed to be restricted to 

microglial cells also under pathological conditions such as Multiple Sclerosis62, brain injury 

and inflammation-induced activation61. However, its efficacy and specificity in the glioma 

environment remain to be further validated. Tmen119 (transmembrane protein 119) is a 

cell surface protein expressed by microglia cells in both mouse and human. However, there are 

some methodological limitations in using Tmem119 for immunophenotyping, since it is 

digested and destroyed by papain 63 – an enzyme used for gentle dissociation of brain tissue, 

which ensures high cell viability and isolation efficiency. Therefore Tmem119 might not be 

applicable in all experimental settings.  
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3.3. GLIOMA IMMUNE MICROENVIRONMENT – INSIGHTS FROM SINGLE-CELL STUDIES 

The heterogeneity of the immune infiltrates and specific roles of distinct subpopulations 

could not be addressed with traditional methods. Therefore, the introduction of single-cell 

omics methods was a breakthrough that provided novel insights into the diversity of immune 

cells infiltrating gliomas.  

Single-cell RNA sequencing (scRNA-seq) allows determining transcriptomic profiles of 

thousands of individual cells 64. It relies on encapsulation of single cells together with reverse 

transcription reagents and unique cellular identifiers, enabling to add a cell-specific tag to each 

cDNA molecule that is synthesized based on an mRNA template. CyTOF (Cytometry by Time-

Of-Flight) is a system for high-dimensional phenotypic analysis of single cells. It utilizes 

monoclonal antibodies conjugated with metal isotopes, which thanks to minimal overlap 

between channels allows evaluating over 40 parameters in a single run 65. Thus, significantly 

outperforming classic flow cytometry analysis or multi-flow cytometry protocols. Cellular 

Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) combines the two 

approaches to detect mRNA and surface proteins at the same time, by employing 

oligonucleotide-conjugated antibodies, of which the oligonucleotide tags are sequenced in 

parallel with transcriptome libraries, allowing simultaneous RNA and surface protein 

measurement 66. This relatively new method has the advantage of comparing RNA expression 

with a protein level that are not always corresponding 66, and gives a possibility to stain a 

virtually unlimited number of epitopes, although only surface proteins can be targeted.  

While scRNA-seq, CITE-seq, and CyTOF techniques rely on bulk or immunosorted 

preparations of cells from the entire organ or tissues, the spatial information is lost. This 

obstacle might be overcome by emerging spatial transcriptomics techniques. Spatial 

transcriptomics allows associating the single-cell expression profile with spatial localization, 

in a quantitative manner on tissue sections 67,68.   

The single-cell omics studies are currently revising our knowledge on cell diversity and 

plasticity under various conditions. Since 2017, when the first scRNA-seq study addressing 

immune cells in gliomas was reported 38, more than 30 single-cell studies demonstrating the 

diversity of myeloid cells in CNS were published (reviewed in 69,70).  
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3.3.1. Heterogeneity of myeloid cells in gliomas 

The first scRNA-seq analysis of myeloid cells in gliomas was carried out on IDH-mutant 

GBMs. The authors found a phenotypic spectrum ranging from microglia- to macrophage-like 

cells based on the gradual change in the expression of the previously established microglia and 

MDMs markers 38. Another scRNA-seq profiling of CD11b+ cells from high-grade and 

low-grade gliomas has shown a similar continuum from microglia-high to MDM-high marker 

gene expression; however, the authors did not provide annotation of an IDH status in their 

analysis 39. They identified tumor-activated microglia and putative monocytes/macrophages, 

and demonstrated distinct signatures using marker genes from murine glioma models 59. The 

authors concluded that BM-derived GAMs upregulate immunosuppressive cytokines and 

markers of oxidative metabolism that are characteristic of the M2 phenotype  39.  

The IDH mutation status emerges as a potent modulator of the infiltration of immune cells 

in the glioma tumor microenvironment (TME). The IDH-mut gliomas show a lower 

accumulation of tumor-infiltrating lymphocytes and a lower level of the PD-L1 immune 

checkpoint protein 71. Friebel et al. (2020) used a mass cytometry analysis measuring 74 

parameters to delineate the immune compartment of IDH-wt, IDH-mut gliomas, and brain 

metastases 72. The authors defined following subpopulations: microglia (P2RY12+), invading 

monocytes (CD11b+CCR2+), macrophages (CD11b+CD49d+), neutrophils (CD66b+CD16+), 

two subsets of classical dendritic cells (cDC1 - CD141+CADM1+ and cDC2 - CD1c+), T cells 

(CD3+), B cells (CD19+HLA-DR+),  NK cells (CD56+CD16+), and plasma cells (CD19+ 

CD38+). They showed that monocytes/macrophages constitute one-quarter of the myeloid 

immune infiltrate in the IDH-wt gliomas and one-half in the brain metastases, but in IDH-mut 

gliomas, the monocyte/macrophage population is minor 72. Additionally, the authors 

demonstrated that glioma infiltrating monocytes and macrophages show a gene expression 

trajectory consistent with a monocyte-to-macrophage (MDM) transition in the TME 72.  

The differences in the proportion of resident microglia and invading MDMs may influence 

clinical outcomes. Stratification of GBM patients according to an MDM marker CD163 and 

microglial marker CX3CR1, demonstrated that the CD163 level negatively correlates with 

overall patient survival, whereas no correlation was found for the CX3CR1 level 72. 

Accordingly, the early scRNA-seq study on human gliomas indicated that the fraction of MDMs 

increases with tumor grade 38 and the cell type identity score based on bulk RNA-seq data from 

The Cancer Genome Atlas (TCGA) demonstrated that microglia frequencies do not differ 



20 

 

between low-grade and high-grade gliomas 39. Altogether, the accumulating evidence suggests 

a diverse contribution of microglia and MDMs to glioma progression. 

3.3.2. Cell identity vs localization and functional states 

Several single-cell studies sampling various tumor areas showed consistently that MDMs 

tend to localize within the tumor core, whereas microglia reside mainly on the tumor edge and 

in the adjacent brain parenchyma 59,72,73. Müller et al. (2017) applied the identified 

transcriptomic signature of microglia and macrophage GAMs to estimate dominant populations 

across glioma anatomical regions in the dataset from the Ivy Glioblastoma Atlas Project 74. 

Analysis of the bulk RNA-seq performed on glioma microdissected regions indicated that 

microglia GAMs are enriched in the leading edge and adjacent white matter, whereas 

macrophage GAMs show increased accumulation in the regions of hyperplastic blood vessels, 

microvascular proliferation, and peri-necrosis 39. Consistently, scRNA-seq on human GBM 

samples resected from the tumor core and tumor periphery, revealed that MDMs (69%) 

predominate within the tumor core whereas microglia are most abundant at the tumor edge 

(86%) 75. Following on that, the transcriptional analysis of periphery- and core-derived samples 

demonstrated that GAMs in the periphery have enriched expression of pro-inflammatory 

interleukin IL1B and number of cytokines (CCL2, CCL3, CCL4, TNF), as well as 

colony-stimulating factor and its receptor (CSF1, CSF1R). Remarkably, the core-derived 

GAMs presented increased expression of the pro-angiogenic VEGFA, hypoxia-induced HIF1A, 

and anti-inflammatory interleukin IL1RN 75. Altogether, agglomerating evidence points to the 

importance of tumor proximity in the tumor-induced activation, but also show differences in 

transcriptional programs expressed by microglia and macrophages. Interestingly, 

immune-checkpoint encoding genes CD274 (PD-L1), PDCD1LG2 (PD-L2), CD80 and CD86 

(CTLA4 receptors) were expressed in both regions, with the slightly higher level in the 

periphery that is indicative of the immunosuppressed microenvironment 75.  

Sankowski et al. (2019) performed the functional analysis of microglial cells from human 

IDH-wt glioblastomas and age-matched controls with scRNA-seq and CyTOF 76. The cell 

clusters composed mainly of GBM-derived cells exhibited decreased expression of microglia 

core genes, and induced interferon-associated (IFI27, IFITM3), lipid metabolism-related (LPL, 

APOE, TREM2), and MHC-I and -II encoding genes (HLA-A/B/C, HLA-DRB1). Additionally, 

the authors identified cells showing high expression of genes associated with hypoxia (HIF1A, 

VEGFA). In their analysis, the authors identified only microglia and did not distinguished 
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monocytes and MDMs. However, the sample size was relatively low (n=1,701 microglial cells) 

that could impede a more detailed cell type identification and characterization of functional 

phenotypes. Nevertheless, using CyTOF the authors confirmed the glioma-induced expression 

of HLA-DR, TREM2, and APOE in microglia (P2RY12+TMEM119+) 76. Another bulk 

transcriptomic analysis detected a type I IFN response in glioma MDMs (CD49d+) but not in 

microglia (CD49d‐) 60, pointing to the infiltrating GAM population as the major source of the 

interferon related genes. 

Figure 3.3 | Illustration summarizing functional states observed in microglia and MDMs in single-cell 

studies on murine and human malignant gliomas. From Kaminska, Ochocka and Segit (2021) 69. Prepared 

with BioRender.com. 
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 More detailed characterization of functional GAM phenotypes was provided in the recent 

scRNA-seq study on newly diagnosed (ND) and recurrent GBMs 77. In line with previous 

reports, the authors identified three major functional transcriptomic profiles: 

1) interferon-related associated with increased expression of STAT1, IFIT2, ISG15, CXCL10, 

2) phagocytosis/lipid-related showing enhanced expression of GPNMB, LGALS3, FABP5, 

CD9 and 3) hypoxic characterized by induction of BNIP3, ADAM8, MIF, HILPDA. Those 

signatures were found in both ND and recurrent gliomas, as well as were recapitulated in a 

murine glioma model (C57BL6 mice injected with GL261 glioma cells). Importantly, the 

authors demonstrated that the identified transcriptomic signatures are differentially enriched in 

different cell clusters that may encompass different cell populations. The comparison of 

induced transcriptional profiles across microglia and MDMs, demonstrated that MDMs induce 

interferon and hypoxic signature at much higher levels. Amongst the infiltrating myeloid cells, 

the authors defined monocytes, transitory monocyte-macrophages, and several macrophage 

clusters enriched in specific transcriptional programs. Interestingly, in the murine glioma model 

the interferon-related genes Rsad2 and Cxcl10 showed also increased expression in monocytes 

and the transitory subpopulation, whereas hypoxic and lipid/phagocytosis-related signatures 

were enhanced only in macrophages 77. Interferon signaling is implicated in a response to 

pathogenic stimuli, known to elicit antiviral and immunoregulatory actions, and treatment with 

interferons has an anti-proliferative effect on tumor cells (reviewed in 78). In contrast, genes 

found in lipid/phagocytosis-related signature were found to play tumor-supportive roles. 

TREM2 expression was shown to positively correlate with tumor progression, promote 

immunosuppression in the tumor microenvironment 79 and cooperate with CSF-1 in sustaining 

macrophage survival and proliferation 80. In turn, ApoE is the best-documented ligand of 

TREM2 81. CD9 has been recognized as an anti-inflammatory marker of monocytes and 

MDMs82. Thus, the interferon and lipid/phagocytosis signatures may yield opposing activities.  

Summarizing, the single-cell resolution studies of murine and human gliomas have shown 

a predominant MDMs accumulation and localization in the tumor core, 

monocyte-to-macrophage transition, a strong impact of MDM accumulation on patient’s 

survival, and the expression of immunosuppressive factors by MDMs. Microglia rather 

decrease expression of their signature genes in human gliomas, show lower expression of the 

glioma-induced transcriptional patterns than MDMs, and being at the tumor invasive edge 

facilitate diffusive tumor growth in the brain parenchyma (Figure 3.3). Patient stratification 

based on the composition of the immune infiltrates may be informative in the selection of the 
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best immunotherapy approach. Further research is needed to determine whether a personalized 

therapy tailored to a specific composition of the immune TME may increase patient survival. 

3.4. SEX-DEPENDENT VIEW ON MALIGNANT GLIOMAS  

3.4.1. Frequencies and therapeutic outcomes of malignant gliomas in males and females 

The sex of a patient is an important factor influencing brain tumors incidence rate, survival, 

and response to therapy 1. Men show a higher incidence rate of the majority of malignant brain 

tumors, including glioblastoma (incidence ratio 1.6:1) (Figure 3.4), and show worse therapeutic 

outcomes from standard therapies than women 83. Women more frequently develop 

a non-malignant meningioma (Figure 3.4) and female patients diagnosed with GBM show 

better survival as compared with men 1,84.  

Mechanisms underlying the sex dependence remain to be elucidated, however recent reports 

indicate that including sex in the molecular subtyping of GBMs could improve its 

classification 85,86. As most gliomas occur in the advanced age, those differences might not 

necessarily depend on the effects of sex hormones. The analysis of molecular cell death profiles 

indicated that male GBM patients show higher volumes of necrosis and that the male 

high-necrosis group shows enrichment of TP53 expression 85. Whereas in females, the 

high-necrosis group is associated with worse survival and increased MYC 85. Additionally, the 

loss of p53 was demonstrated to induce higher vulnerability for malignant transformation of 

male astrocytes 86. Yang et al. (2019) analyzed therapeutic responses of male and female GBM 

Figure 3.4 | Incidence Rate of selected primary CNS tumors regarding patient’s sex (Males : Females). From 

CBTRUS statistical report from United States in 2013-2017 1.  
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patients by comparing the therapeutic outcomes with transcriptional profiles 83. The 

transcriptional variation could be explained in 45% by the component common for both sexes. 

However, a large fraction (~35%) of the transcriptional variability appeared to be sex-specific. 

Importantly, the transcriptional patterns displayed a sex-dependent effect on survival, as the 

highest survival rate was achieved by women with down-regulated genes involved in integrin 

signaling, and men with diminished expression of cell-cycle genes 83.  

The above-mentioned studies emphasize the importance of including sex in the analyses of 

glioma pathobiology and provide compelling evidence that combining the results from both 

sexes can conceal critical biological elements that govern tumor development and influence 

clinical outcomes in male and female glioma patients.  

3.4.2. Sex-related differences in immune responses 

The sex-specific outcomes of glioma patients may be linked to differences in the immune 

system function, as the efficacy of cancer immunotherapy differs between men and women, 

with men showing better therapeutic outcomes 87.  

These differences may partially emerge from the interaction of the endocrine and immune 

systems, as sex hormones were shown to modulate immune responses. Women are found to 

elicit stronger immune responses and more frequently develop autoimmune diseases, compared 

with men 88,89. Immune cells, including macrophages and dendritic cells, express estrogen, and 

progesterone receptors. Depending on the context, estrogens may exert both inflammatory and 

immunosuppressive responses, whereas progesterone has broad anti-inflammatory properties 

(reviewed in 90). Androgens are also found to suppress the activity of immune cells, as 

testosterone diminishes the synthesis of a pro-inflammatory cytokine tumor necrosis 

factor-alpha (TNFα), inducible nitric oxide synthase (iNOS), as well as the production of nitric 

oxide by macrophages 91. Men with androgen deficiency show increased levels of antibody 

titers and pro-inflammatory cytokines 92,93. Accordingly, the testosterone-reducing therapies 

result in a lower count of the blood T regulatory cells and an elevated number of NK cells 94.  

Up to date, few studies that addressed the influence of sex on microglia functions revealed 

considerable sex-related differences. Male and female microglia were found to differ in overall 

frequency and fraction of amoeboid cells across specific brain areas 95,96. In addition, murine 

male microglia have higher expression of inflammation and antigen-presentation related genes, 

whereas female microglia show higher neuroprotective capacity 95,97. A bulk RNA-seq study 

combined with transplantation experiments demonstrated that the sex-specific transcriptomic 
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differences are tightly embedded and likely independent of sex hormones, as they were found 

to be retained upon cross-transplantation of microglial cells to the animal of the opposite sex 97.  

The influence of sex on glioma immunopathology remains largely unexplored, thus studies 

on microglia in both sexes are required to comprehend the importance of a sex-related variance. 

Ensuring proper representation of both sexes in further studies of microglial function in glioma 

development and progression may expand our understanding of the sex influence on glioma 

prevalence and responses to immunotherapy.  

3.5. OVERVIEW OF APPLIED METHODOLOGIES 

3.5.1. Murine glioma model 

In this work a murine glioma model was employed, specifically, C57BL6 mice injected 

intracranially with GL261 murine glioma cells. The GL261 glioma cells have been developed 

from chemically induced tumors arising after intracranial administration of 

3-methylcholantrene into C57BL/6 mouse, and subsequent series of subcutaneous and 

intracranial passages, leading to the development of in vitro cell cultures in the mid-1990s 98,99. 

GL261 glioma cells have point mutations in K-ras (Kirsten rat sarcoma virus) gene and p53 

tumor suppressor gene, associated with p53 upregulation and increased expression of Myc 

oncogene 99,100. Human TP53 is commonly deregulated in cancer, in GBMs the TP53 

aberrations are found in 36% of cases, among which point mutations associated with the TP53 

upregulation are most common 15. Overexpression of mutated K-ras along the mutated Act gene 

(encoding AKT kinase) in Nestin-positive cells was found to induce the formation of a tumor 

exhibiting the histological features of GBM in genetically engineered mouse models 101. Many 

GBMs show increased activity of the Ras (Rat sarcoma virus) protein family involved in signal 

transduction 102. The K-ras mutation has been recently described in gliomas, although its 

occurrence is not frequent 7.   

GL261 grow rapidly in in vitro conditions and form highly aggressive, lethal tumors while 

transplanted intracranially. The tumors induced with 1-4·105 GL261 cells show 100% mortality 

rate within 21-25 days 99,103,104, and are relatively resistant to radiotherapy 105,106, although their 

growth pattern is not so diffusive as in most of the malignant gliomas 99. A recent study provided 

a systematic comparison of the immune environment in human GBMs and several murine 

glioma models: (1) K-ras/p53 mutant GL261, (2) Pten deficient CT2A, (3) H-ras and Act 

overexpressing a spontaneous tumor model 005, (4) Mut3 and (5) Mut4 generated by NF1 and 

p53 inactivation. Interestingly, the cell models harboring NF1 mutation that is characteristic for 
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the most aggressive mesenchymal GBM subtype, failed to induce the tumor or showed slow 

tumor growth upon intracranial implantation. When human GBMs and murine models were 

compared, a high proportion of the immune infiltrates in human GBMs are antigen-presenting 

cells encompassing microglia, peripheral monocytes/macrophages, and DCs, which is also 

observed in GL261 tumors 57,77, although the frequency of DCs is higher in murine models 107. 

T-cell infiltration was found in all tumor types. However, GL261 had the highest rate of 

CD4+/8+ exhausted T-cells and a moderate level of CD4+ T regulatory cells compared with other 

types, pointing to high immunosuppression of the GL261 microenvironment 107.  

A single-cell study investigating the glioma microenvironment demonstrated that immune 

cell populations identified in the human primary and recurrent GBMs are largely recapitulated 

by immune infiltrates of GL261 intracranial tumors. Both human GBMs and murine tumors are 

infiltrated by monocytes, microglia, macrophages, proliferating microglia, T cells, B cells, NK 

cells, and dendritic cells 77, although the proportions of contributing populations may differ. 

In addition, myeloid infiltrates were found to express several transcriptomic programs, that are 

represented in primary and recurrent GBMs, as well as in murine gliomas 77.  

The immune cell composition may differ between malignant glioma patients, depending on 

the genomic context 70, administered treatments and patient characteristics such as sex, age, or 

life habits. Therefore, modeling the inter-patient variability might not be achievable in animal 

models. Still, GL261 tumors exhibit many characteristics of malignant gliomas and are capable 

of inducing infiltration of diverse immune cell populations, which to some extent, recapitulates 

the complex immune environment observed in GBMs. The results of the detailed analysis of 

glioma TME may improve our understanding of the heterogeneity and specialized functions of 

immune cells in gliomas.  

3.5.2. Single-cell RNA sequencing technology 

scRNA-seq allows transcriptomic analysis of every single cell in a mixture of thousands of 

different cells. Thus, information about diverse subpopulations is retained, in contrast to bulk 

RNA profiling methods in which gene expression is averaged over a total number of cells and 

information about the cell diversity is lost.  

The first single-cell mRNA sequencing study came already in 2009 and was performed for 

four blastomere single cells 108. Soon after, a plate-based multiplexing solution was introduced 

that allowed assaying from tens to several thousand cells in a single experiment 109,110. In this 

approach, single cells were sorted onto 96-well plates and lysed to release mRNA that was then 



27 

 

indexed with a cell-specific barcode, before pooling for library preparation. This method 

provided great insight into the power of single-cell resolution. However, the number of cells 

that could be assayed was very limited and the procedure time-consuming. Improvement was 

brought by the introduction of the droplet-based encapsulation in a capillary system, which was 

demonstrated independently by two research groups 111,112. It allowed encapsulating single cells 

in nanoliter aqueous droplets, together with barcode indexes and reagents for reverse 

transcription, enabling fast processing of even thousands of individual cells. The droplet 

microfluidics was then commercialized 113, making it available to a higher number of 

investigators. Currently, the end-to-end solutions are provided by many producers 

(10x Genomics, Bio-Rad, 1CellBio, BD, Mission Bio, Dolomite Bio, WaferGen, Genesis), and 

the number of cells that can be processed in a single run ranges from thousands to hundreds of 

thousands of cells (high-throughput Chromium X, 10x Genomics). 

During one decade, the single-cell sequencing technology has been greatly expanded, from 

very few cells that were individually processed through library preparation steps, to multiplexed 

high-throughput solutions making the technique more and more widespread and accessible.  

3.5.3. Droplet-based scRNA-seq system 

Figure 3.5 | Schematic workflow of the scRNA-seq with 10x Chromium (10x Genomics).  Adapted from 

www.10xgenomics.com . 
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The droplet-based single-cell RNA sequencing technology employs a capillary system to 

encapsulate individual cells in water-phase droplets. A single cell is encapsulated together with 

a bead covered with a unique set of oligonucleotide indexes, cDNA synthesis enzymes, and cell 

lysing reagents forming a microcapsule referred to as a gel-bead in emulsion (GEM) 

(Figure 3.5).  

Once encapsulation is finished, cells lyse releasing mRNA molecules and gel-beads 

dissolve unleashing the oligonucleotide indexes within the GEM interior. Next, mRNA 

molecules bind to the GEM-specific oligonucleotide indexes via poly-A tail and are reverse 

transcribed. To specifically analyze only polyadenylated mRNA molecules, and to circumvent 

capturing ribosomal RNAs, poly(T)-primers are typically used. The polyadenylated mRNA is 

next converted to complementary DNA (cDNA) by reverse transcriptase and tagged with 

unique molecular identifiers (UMIs) to mark unequivocally a single mRNA molecule and 

preserve information on cellular origin. The UMI tags will be used in a subsequent 

computational analysis to identify reads coming from the mRNA molecules of the same cell. 

Upon cDNA synthesis, the emulsion is broken down and all molecules from different cells are 

pooled together for further steps of library preparation, which are conducted similarly to the 

standard bulk RNA-seq protocols.  

3.5.4. Simultaneous mRNA and surface protein assaying at the single-cell level 

Figure  3.6 | CITE-seq procedure scheme. Illustration from Stoeckius et al (2017) 66 
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Transcriptome sequencing at the single-cell level provides a great amount of information 

regarding a cell type and cell state, allowing the assessment of cellular diversity and the 

identification of specialized cell populations. Still, the mRNA level not necessarily corresponds 

to the protein level, which may hamper identification of e.g. cell type-specific surface protein 

markers. Simultaneous mRNA and surface protein assaying at the single-cell level expands the 

scRNA-seq method by employing the antibody-oligonucleotide conjugates (Ab-oligo).  

Cellular Indexing of Transcriptomes and Epitopes (CITE-seq) 66 and RNA expression and 

protein sequencing assay (REAP-seq) 114 were developed in parallel and both employ cell 

staining with an antibody – similar as in the case of flow cytometry, but the CITE/REAP-seq 

antibodies carry oligonucleotide tags instead of fluorophores.  

The Ab-oligos are composed of an antibody targeting the epitope of interest, conjugated with 

an oligonucleotide containing an antibody-specific barcode. Since the barcode is a 15-digit 

sequence, the CITE-seq method allows staining a virtually unlimited number of surface epitopes. 

The oligonucleotide barcodes from Ab-oligo conjugates are processed similarly to mRNA 

molecules, converting the protein detection into a sequenceable readout that can be quantified 

(Figure 3.6). First, cells are stained with Ab-oligos and then encapsulated with the 

capillary-based system. Following cell lysis, oligonucleotides from Ab-oligos bind to the 

complementary sequences of the cell-specific oligonucleotide index, which can be either based 

on the poly-A and poly-T hybridization as in the case of mRNA molecules or can employ 

dedicated hybridization sequences. Next, reverse transcription is performed, resulting in the 

generation of the oligo products that consist of an antibody-specific barcode and a cell-specific 

index. The oligo products are further amplified for library preparation. Since the libraries 

generated from Ab-oligos are shorter (155-180 bp) than libraries generated from mRNA 

molecules (400-450 bp), they can be easily separated with size selection using magnetic beads 115. 

Libraries separation allows adjusting the concentration of samples loaded for sequencing and 

obtain optimal sequencing depth as the recommended range differs about 10-fold: 2-5 x 103 reads 

per cell for Ab-Oligo and 2-5 x 104 for mRNA library. Next, during a computational analysis, 

RNA readouts are paired with the Ab-oligo read-outs, thanks to the cell-specific indexes. Thus, 

both RNA and protein levels of the same targets can be assessed simultaneously in every 

single-cell. 
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3.5.5. Cell hashing procedure for sample multiplexing 

An additional advantage of CITE-seq is the possibility to use the “hashtag” Ab-oligos for 

sample labeling 116. In this approach, Ab-oligos are made with antibodies targeting abundant 

epitopes that are expressed by all cell types. The hashing Ab-oligos employed in mouse and 

human studies typically consists of a mixture of antibodies e.g. anti-CD45 and anti-MHCI 

antibodies (mouse), and anti-CD298 and anti-β2-microglobulin (human) (Biolegend., 

TotalSeq).  

Sample labeling with a hashing antibody allows multiplexing of several samples in one 

encapsulation well (Figure 3.7), which yields two major benefits. First, since multiple samples 

can be loaded into one well, the amount of reagents needed to conduct the scRNA-seq procedure 

decreases and thus significantly reduces the costs. Additionally, sample multiplexing favors 

increasing the number of replicates, since running e.g. 10 000 cells in one replicate vs 2 500 

cells in four replicates generates approximately the same costs, but the latter provides much 

better statistical power and control over reproducibility and batch effects.  

Second, the capillary-based single-cell encapsulation is not 100% efficient and results in 

the generation of multiple empty droplets – that can be easily identified and removed from the 

analysis, as well as droplets containing more than one cell – multiplets that are challenging to 

be identified with computational methods and can interfere with the analysis. The higher 

number of cells loaded onto a single well, the higher the multiplet rate. In cell hashing, droplets 

in which cells derived from two (or more) samples were encapsulated, result in the presence of 

two (or more) distinct hashing indexes. Therefore, the cell hashing procedure allows removing 

the vast majority of multiplets and improves data quality.  

Figure 3.7 | Schematic representation of cell hashing procedure. Illustration from Stoeckius et al (2018) 116 
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Summing up, the single-cell-based methods immensely advanced since the invention of 

scRNA-seq a decade ago. They can be applied with the end-to-end commercial systems 

allowing sequencing of thousands of individual cells in a single run and become more and more 

accessible to a wide number of investigators. Thus, studies on cellular heterogeneity might 

substantially improve our understanding of various biological processes.  
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4. Aims of the study 

This study aimed to decipher the heterogeneity of myeloid cells in the microenvironment 

of the experimental murine gliomas, provide functional characteristics of a given cell type and 

identify surface protein markers for reliable separation of microglia and macrophages in the 

glioma microenvironment.  

To address the issue of cellular heterogeneity, the study employed: 1) single-cell RNA 

sequencing (scRNA-seq) that allows transcriptomic profiling at a single cell level, and 

2) Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) that combines 

scRNA-seq with simultaneous assaying of cell-surface markers at protein level. All 

experiments were performed on a murine glioma model: C57BL6 mice implanted 

with GL261 cells.  

The specific aims were as follows: 

1) Implement scRNA-seq to reveal the heterogeneity of myeloid cells in the 

microenvironment experimental murine gliomas 14 days after implantation 

(the pre-symptomatic phase). 

2) Provide functional characteristics of a given myeloid cell type infiltrating the glioma 

TME.  

3) Validate main findings and discriminating markers by flow cytometry and 

immunofluorescence. 

4) Search for potential sex differences in responses of myeloid cells in the glioma TME. 

5) Implement CITE-seq to reveal the heterogeneity of myeloid cells in the glioma TME 14 

and 21 days after implantation (at the pre-symptomatic and symptomatic phases). 

6) Compare the heterogeneity and functional phenotypes of myeloid cells in the TME of 

experimental and human malignant gliomas.  
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5. Materials and methods 

5.1. DEVELOPMENT OF THE GL261 TDT+ LUC+ GL261 MURINE GLIOMA CELL LINE 

GL261 glioma cells were obtained from prof. Helmut Kettenman (MDC, Berlin, Germany). 

Cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS, Gibco, MD, USA) and antibiotics (100 U/mL penicillin, 100 µg/mL 

streptomycin) in a humidified atmosphere of CO2/air (5%/95%) at 37°C (Heraeus, Hanau, 

Germany). 

In order to obtain a cell line allowing bioluminescent in vivo imaging, GL261 were stably 

transfected with pcDNA3.1(+)/Luc2=tdT plasmid (Addgene, Teddington, UK) carrying a 

fusion gene luc2=tdT that encodes Firefly Luciferase and tandem Tomato red fluorescent 

protein. The plasmid was first linearized by enzymatic digestion with Notl restriction enzyme 

(ThermoFisher). GL261 cells were seeded in the antibiotic-free medium in a density of 3·105 

cells/well on a 12-well plate. After 24h incubation, a mixture containing 4ul of 

Lipofectamine2000 (ThermoFisher), 1.6 µg of the linearized plasmid or equivalent volume of 

Opti-Mem [SigmaAldrich] for mock transfection and Opti-Mem up to 200ul was prepared 

according to manufacturer’s protocol. The mixture was added to the cells for 4h and then 

changed to the antibiotic-free medium. After 24 h the medium was changed to the one 

supplemented with 400 µg/ml G-418 Solution (Roche) until complete death of mock-transected 

cells. Next, the tdT-positive cells were enriched twice with fluorescence activated cell sorting 

(FACS), expanded and cryopreserved in FBS with 10% dimethyl sulfoxide (Sigma-Aldrich). 

5.2. ANIMALS 

Male and female 10-week-old C57BL/6 mice were purchased from the Medical University 

of Bialystok, Poland. Animals were kept in individually ventilated cages, with free access to 

food and water, at the temperature of 21-23°C, 50-60% humidity, under a 12h/12h day and 

night cycle. All experimental procedures on animals were approved by the First Local Ethics 

Committee for Animal Experimentation in Warsaw (approval no 563/2018 and 764/2018). 

5.3. IMPLANTATION OF THE TDT+LUC+ GLIOMA CELLS TO C57BL6 MICE 

Mice (12-week old) were put under anesthesia with 2% isoflurane that was maintained 

during the entire procedure. Next, animals were injected with analgesic butorphanol 

(Butomidor) 0.03 mg/kg bodyweight and mounted in the stereotactic apparatus. Skin on the 
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head was incised and a whole was drilled at the following coordinates: +1 mm anterior-posterior 

(AP), -1.5 mm medial-lateral (ML), -3 mm dorsal-ventral (DV). Next, using a Hamilton syringe 

a single cell suspension of tdT+luc+ GL261 cells (80 000 cells in DMEM) were injected in the 

total volume of 1 µl at the rate of 0.25 µl/min to the  right striatum. The syringe was withdrawn 

at the rate of 1 mm/min to prevent backward outflow of the cell suspension. Next, the incision 

was closed and an animal was monitored until full recovery from the anesthesia.  

5.4. BIOLUMINESCENT IMAGING OF TUMOR GROWTH 

Tumor growth was verified by assaying GL261-expressed luciferase activity with Xtreme 

in vivo bioluminescence imaging system (Bruker, Germany), at 7, 14 and 21 day post-

implantation. Animals were injected intraperitoneally with 150 mg/kg body weight of D-

Luciferin sodium salt (BC218, Synchem). Next, animals were put under anesthesia with 2% 

isoflurane and placed in the imaging apparatus. At the 10 min post D-Luciferin injection the 

bioluminescent signal was acquired for 2 minutes.  

5.5. TISSUE DISSOCIATION 

Naïve animals (controls), and mice 14 and 21 days post-implantation with a confirmed 

tumor presence were perfused transcardially with ice-cold phosphate-buffered saline (PBS), in 

order to remove blood cells from the brain. Next, brains were dissected and tumor-bearing 

hemispheres or whole brains of naïve animals were dissociated enzymatically. The dissociation 

was performed with the Neural Tissue Dissociation Kit with papain (Miltenyi Biotec) – for 

scRNA-seq preparations, or with 0.5 mg/ml DNase I (DN25, Sigma-Aldrich) in DMEM (Gibco, 

Germany) – for flow cytometry and CITE-seq preparations in order to preserve the Tmem119 

epitopes. GentleMACS Octo Dissociator (Miltenyi Biotec) was used according to the 

producer’s protocol. Following the enzymatic dissection, the resulting cell suspension was 

passed through a 70 µm and 40 µm strainer, washed with Hank’s Balanced Salt Solution 

(HBSS) with calcium and magnesium (Gibco, Germany) and centrifuged at 300 g, 4 ºC for 10 

min. For myelin gradient removal, the pellet was suspended in 25 ml cold Percoll solution (18.9 

mL gradient buffer containing 5.65 mM NaH2PO4H2O, 20 mM Na2HPO42(H2O), 135 mM 

NaCl, 5 mM KCl, 10 mM glucose, 7.4 pH; 5.5 mL Percoll (GE Healthcare, Germany); 0.6 mL 

1.5 M NaCl), overlayered with 5ml of cold PBS and centrifuged for 20 min at 950 g and 4 ºC, 

without acceleration and brakes. Following centrifugation, the myelin layer was carefully 

removed from the interface of PBS layer and bottom layer and the remaining supernatant was 

removed. Cell pellet was suspended with Stain Buffer (BD Pharmingen), and cells counted with 
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an EVE™ Automatic Cell Counter (NanoEnTek Inc., USA) before further processing. In case 

of scRNA-seq experiment, cell suspension from two pooled tumor or control animals was split 

between for CD11b+ cell sorting for scRNA-seq and flow cytometry analyses, whereas for 

CITE-seq whole cell suspension from single animal (not pooled) was taken for CD11b+ cell 

sorting for CITE-seq.  

5.6. FLOW CYTOMETRY 

The staining procedure for flow cytometric analysis was performed directly after 

dissociation, samples were kept on ice avoiding prolonged light exposure. Cells were pelleted 

and suspended in 50 µl LiveDead Fixable Violet Dead Stain (ThermoFisher) or Fixable 

Viability Dye eF506 (eBioscience) (1:1000 in PBS) for 10 min. For the dead cell staining, a 

positive control was prepared by incubation of a cell suspension aliquot for 20 min at 56 ºC. 

Next, the cells were washed with Stain Buffer (BD Pharmingen) and suspended in 50 µl of 

CD16/CD32 Fc Block™ (BD Pharmingen) diluted 1:250 in Stain Buffer and incubated for 10 

min, to block FcγRIII/II and reduce unspecific antibody binding. Subsequently, 50 µl of 

antibody cocktail was added (see Table 5.1 for antibody specifications and dilutions). The flow 

cytometry procedures conducted in parallel with scRNA-seq experiments and for validation of 

scRNA-seq results were performed by Salwador Cyranowski, M.Sc. from the Laboratory of 

Molecular Neurobiology in cooperation with Julian Swatler, M.Sc. from the Laboratory of 

Cytometry, Nencki Institute, Warsaw.   

5.7. FLUORESCENCE ACTIVATED SORTING OF CD11B
+

 FOR SCRNA-SEQ 

Directly after dissociation, cells were pelleted (at 300 g, 4 ºC for 10 min) and suspended in 

LiveDead Fixable Violet Dead Cell Stain (ThermoFisher) in PBS, in the density of 1·106 cells 

per 100 µl. After 10 min incubation at 4 ºC, cells were washed twice with Stain Buffer (BD 

Pharmingen) and suspended in the anti-mouse CD16/CD32 Fc Block™ (BD Pharmigen),  in 

the density of 1·106 cells per 100 µl, in order to block the unspecific antibody binding. Next, 

anti-mouse CD11b antibody (M1/70, BD Pharmigen) was added and cell suspension incubated 

for 20 min at 4 °C. Then, cells were washed twice with Stain Buffer and sorted with the dead 

cell exclusion to 20% FBS in PBS. For reagents dilutions and catalog numbers see Table 5.1. 

The cell sorting procedures were performed in the Laboratory of Flow Cytometry, Nencki 

Institute, Warsaw.   
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Table 5.1 | List of reagents and antibodies used for flow cytometric analysis and fluorescence activated cell 

sorting 

Reagent  Manufacturer Cat. number Clone Fluorophore Dilution 

LiveDead 

Fixable Violet 

Dead Cell Stain 

ThermoFisher L34955 - - 1:1000 

Fixable Viability 

Dye eF506 
eBioscience 65-0866 - - 1:1000 

Stain Buffer BD Pharmingen 554656 - - - 

anti-mouse 

CD16/CD32 Fc 

Block 

BD Pharmingen 553141 - - 1:250 

anti-CD45 BD Pharmingen 561868 30-F11 PE-Cy7 1:800 

anti-CD11b BD Pharmingen 557960 M1/70 
Alexa Fluor 700 

(flow cytometry) 
1:800 

anti-CD11b BD Pharmingen 553310 M1/70 FITC      (FACS) 1:800 

anti-Ly6C BD Pharmingen 560525 AL-21 PerCP-Cy5.5 1:100 

anti-CD49d BioLegend 103605 R1-2 FITC 1:400 

anti-PD-L1 ThermoFisher 63-5982-82 MIH5 SuperBright600 1:100 

anti-Tmem119 Abcam ab210405 106-6 
unconjugated 

(rabbit) 
1:400 

anti-rabbit Alexa 

Fluor 488 pAb 
Abcam ab150077 - Alexa Fluor 488 1:1000 

anti-Gal-3 eBioscience 125408 M3/38 Alexa Fluor 648 
1:200 FC 

1:100 IF 

5.8. SINGLE-CELL RNA SEQUENCING 

After sorting, viability and cell count was verified with an EVE™ Automatic Cell Counter 

(NanoEnTek Inc., USA). The cell suspension volume equivalent to 5000 target cells were used 

for further processing. Cell encapsulation and library preparation was performed with 

Chromium Controller (10x Genomics) and Single-Cell Gene Expression Kit v (10x Genomics) 

according to the producer’s user guide (CG00052). The quality and quantity of generated 

libraries were verified with High-Sensitivity DNA Kit (Agilent Technologies, USA) on a 2100 

Bioanalyzer (Agilent Technologies, USA). Sequencing was performed in the rapid run mode 

and the rapid run flow cell, paired-end (read 1 – 26 bp, read 2 – 100 bp) on a HiSeq 1500 

(Illumina). The sequencing depth was targeted to 4·104 reads per cell. Sequencing of the 

scRNA-seq libraries was performed by Bartłomiej Gielniewski, Ph.D. and 

Bartosz Wojtaś, Ph.D. in the Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw.   
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5.9. SCRNA-SEQ DATA PROCESSING 

Raw sequencing data (BCL files) were demultiplexed and converted to FASTQ files using 

the CellRanger v3.0.1 (10x Genomics) (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/installation)113,117 and bcl2fastq v2.20.0.422 (Illumina). 

Sequencing results were mapped to a mouse genome GRCm38 (mm10) acquired from the 10x 

Genomics website and quantified using a CellRanger v.3.0.1 113,117 . The total number of cells 

identified by the CellRanger was 41 059. The median number of detected genes per cell was 

1,059, and the median unique molecular identifiers (UMIs) per cell was 2 178. Data analysis 

was performed in R using Seurat v3 117,118, within which data normalization, graph-based 

clustering, non-linear dimensionality reduction (UMAP/tSNE) and identification of cluster 

differentially expressed genes were performed. Unless otherwise specified in the description, 

all other quantitative parameters were fixed to default values. To filter out possible empty 

droplets, low-quality cells, and possible multiplets, cells with <200 or >3,000 transcripts were 

excluded from the analysis. Additionally, cells of poor quality, recognized as cells with >5% of 

their transcripts coming from mitochondrial genes, were excluded from the downstream 

analysis. After applying these filters, 40 401 cells were present in the data set. Gene expression 

measurements for each cell were normalized by the total number of transcripts in a cell, 

multiplied by a default scale factor, and the normalized values were log-transformed 

("LogNormalize" method). Following the Seurat workflow, for each replicate the 2 000 most 

highly variable genes were identified using variance stabilizing transformation ("vst"). To 

facilitate identification of cell types these gene sets were expanded by adding genes described 

as having important roles in immune cells (see Supplementary Table 3) and genes involved in 

cell cycle regulation 119. This extension did not influence our conclusions. The data processing 

was performed in collaboration with Paweł Segit, M.Sc. and Jakub Mieczkowski, Ph.D. from 

the Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw. 

5.10. IDENTIFICATION OF MYELOID CELLS IN SCRNA-SEQ 

Having two biological replicates for each sex and condition (female control, female tumor, 

male control, male tumor), data from the corresponding samples were integrated using a 

Seurat v3 approach 117. To avoid obtaining results fitted too closely to a particular data set and 

therefore possibly failing to fit to the additional data, firstly 2000 integration anchors (i.e., cells 

that are mutual nearest neighbors between replicates) were found. These anchors were then 

used as an input to the data sets integration procedure.  
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Integrated data were scaled, and unwanted sources of variation, namely a total number of 

counts per cell, the percentage of transcripts coming from mitochondrial genes per cell, and cell 

cycle effect were regressed out, as described in a corresponding vignette 

(https://satijalab.org/seurat/v3.0/cell_cycle_vignette.html). Data dimensionality reduction was 

performed using a principal component analysis (PCA), and the first 30 principal components 

were used in the downstream analyses. For each condition separately, the expression profiles 

were then clustered using an unsupervised, graph-based approach with the resolution parameter 

set to 0.3. Clustering results were visualized using two-dimensional t-Distributed Stochastic 

Neighbor Embedding (t-SNE) 120. Based on expression of the reported/canonical markers, the 

clusters dominated by myeloid cells in four conditions were identified and further analyzed. 

The computational part of myeloid cells identification was performed in collaboration with 

Paweł Segit, M.Sc. and Jakub Mieczkowski, Ph.D. from the Laboratory of Molecular 

Neurobiology, Nencki Institute, Warsaw. 

5.11. IDENTIFICATION OF CELL POPULATIONS IN SCRNA-SEQ 

Myeloid cells identified in each condition separately (see above) were extracted and 

merged. For the merged data set, a new set of the 2,000 most highly variable genes was 

identified using variance stabilizing transformation ("vst"), and this set was further expanded 

by adding the genes involved in cell cycle regulation. Computation of expression estimations, 

regression of the unwanted variation, and data dimensionality reduction were performed as 

described above. Next, the expression profiles were clustered using the same approach as above, 

but with a resolution parameter set to 0.6. After clustering, data were visualized using two-

dimensional Uniform Manifold Approximation and Projection (UMAP) 121. Based on 

expression of reported/canonical markers of myeloid cells, clusters with cells of interest 

(microglia, macrophages, and BAMs) were identified.  

Differentially upregulated genes (signature genes) were found for each class of interest. 

Significantly upregulated genes between compared groups were found using a Wilcoxon Rank 

Sum test implemented in Seurat v3 (min.pct = 0.25, only.pos = TRUE). These genes were 

subsequently used for the functional analysis and characterization of the identified clusters. 

Gene Ontology analysis was performed using the clusterProfiler v3.12.0 package 122. This part 

was performed in cooperation with Paweł Segit, M.Sc. and Jakub Mieczkowski, Ph.D. from the 

Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw. 
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5.12. ANTIBODY-OLIGONUCLEOTIDE TAG CONJUGATION FOR CITE-SEQ 

The oligonucleotide tags were designed according to the 10x Chromium guidelines, in a 

way to be compatible with the v3 and v3.1 10x chemistry (Figure 5.1). Briefly, the 

oligonucleotide sequence consisted of: Capture Sequence 1 - sequence complementary to the 

capture sequence on the Gel Bead; Feature Barcode - an antibody-specific tag allowing for the 

feature identification; TruSeq Read 2 - a primer site for library amplification. The unique 

Feature Barcode sequences were selected from the Barcode Whitelist Rev A CG000193 123, in 

order to exclude a possibility of the barcode overlap with the existing barcode sequences 

utilized in the 10x and TotalSeq reagents. Full oligonucleotide tags sequences are shown in 

Table 5.2. 

Figure 5.1 | Schematic representation of the antibody-oligonucleotide conjugate capture. Adapted from the 

CG000149 Rev B demonstrated 10x protocol 124. 

A list of antibodies used for conjugation is given in Table 5.3. The recommended antibody 

amount for conjugation is 100 µg in a concentration of 1 mg/ml. Thus, anti-CD74 antibody was 

condensed to the recommended concentration with the Antibody Concentration Kit ab102778 

(Abcam) before conjugation. The antibody and oligonucleotide conjugation was performed 

with the Oligonucleotide Conjugation Kit ab218260 (Abcam) according to the producer’s 

protocol. Briefly, 100 µM of an oligonucleotide diluted in 100 µl of Wash Buffer was activated 

with Oligonucleotide Activation Reagent for 30 min at RT. Simultaneously, 100 µl of an 

antibody at 1 mg/ml concentration was activated with an Antibody Activation Reagent for 30 

min at RT. Next, the activation reagents were removed with desalting columns, and antibody 

and oligonucleotide eluents were mixed in a ratio of 1:3, 1:5, or 1:10 and incubated for 1 h at 

RT. The conjugates were then purified using Conjugate Clean Up reagent that was added to the 

conjugates in an equal volume, incubated for 20 min at RT, and centrifuged for 5 min at 15,000g 

and RT. Next, the supernatant was removed carefully, and the conjugate pellet was suspended 
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in the Antibody Suspension Buffer supplemented with 0.02% sodium azide to a final 

concentration of 1 mg/ml. The conjugation efficiency was verified with SDS-PAGE on 4-12% 

gradient gel, and the conjugate solutions were stored at 4 ºC. 

Table 5.2 | Sequences of the oligonucleotide tags. The Feature Barcode sequence is given in bold. AmMC12 

indicates an amine group at the C12 of the 5’ end.   

oligo1 5’ AmMC12/GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNN 

AAGGCAGACGGTGCANNNNNNNNNGCTTTAAGGCCGGTCCTAGCAA 3’ 

oligo2 5’ AmMC12/GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNN 

GGCTGCGCACCGCCTNNNNNNNNNGCTTTAAGGCCGGTCCTAGCAA 3’ 

oligo3 5’ AmMC12/GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNN 

TAGTTGACATGCCATNNNNNNNNNGCTTTAAGGCCGGTCCTAGCAA 3’ 

Table 5.3 | List of antibodies used for conjugation.  

Name Concentration Cat. No Clone Lot Producer 

Anti-Tmem119 1 mg/ml ab220249 106-6 GR3264318-2 Abcam 

Anti-CD74 0.5 mg/ml 151002 In-1 B297738 Biolegend 

Anti-CD52 1 mg/ml D204-5 BTG-2G 062 MBL 

5.13. FLUORESCENCE ACTIVATED SORTING OF CD11B
+

 FOR CITE-SEQ 

Directly after dissociation, the volume of cell suspension equivalent to 1 x 106 cells was 

centrifuged at 300 g, 4 ºC for 10 min and the pellet was suspended in LiveDead Fixable Violet 

Dead Cell Stain (ThermoFisher) 1:1000 in PBS, in the density of 1 x 106 cells per 100 µl. After 

10 min incubation at 4 ºC, cells were washed twice with Stain Buffer (BD Pharmingen) and 

suspended in 50 µl of anti-mouse CD16/CD32 Fc Block™ (BD Pharmigen) 1:250,  in order to 

block the unspecific antibody binding. During incubation, the antibody cocktail containing 

marker panel and cell hashing Ab-oligo conjugates was prepared. Briefly, proper amounts of 

marker panel Ab-oligos were mixed (Table 4.3), filled with Stain Buffer up to 52.5 µl x the 

number of samples, and aliquoted for each CITE-seq sample. Next, a sample-specific cell hashing 

Ab-oligo (Table 4.4) was added, and antibody cocktails were centrifuged at 14,000g, 4ºC for 10 

min. Next, supernatants from each Ab-oligo cocktail mix and anti-mouse CD11b antibody 

(M1/70, BD Pharmigen) were added to the appropriate cell suspension sample and incubated for  

20 min at 4 °C. Cells were washed twice with Stain Buffer and sorted with the dead cell exclusion 

to 20% FBS in PBS. The sorting was stopped after obtaining 50,000 cells per sample. The cell 

sorting procedures were performed in the Laboratory of Flow Cytometry, Nencki Institute, 

Warsaw. 
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Table 5.4 | List of antibody-oligo conjugates included in the protein panel for CITE-seq 

Name Producer Cat. No Clone Lot Barcode 
Conjugatio

n 

Anti-Tmem119 Abcam ab220249 106-6 
GR3264

318-2 

GGCTGCGC

ACCGCCT 

in-house 

 

Anti-CD74 Biolegend 151002 In-1 B297738 
AAGGCAG

ACGGTGCA 
in-house 

Anti-CD52 MBL D204-5 
BTG-

2G 
062 

TAGTTGAC

ATGCCAT 
in-house 

TotalSeq™-B0014 

Anti-CD11b 
Biolegend 101273 M1/70 B300518 

TGAAGGCT

CATTTGT 
commercial 

TotalSeq™-B0096 

Anti-CD45 
Biolegend 103161 30-F11 B294506 

TGGCTATG

GAGCAGA 
commercial 

TotalSeq™-B0013 

Anti-Ly-6C 
Biolegend 128053 HK1.4 B302523 

AAGTCGTG

AGGCATG 
commercial 

TotalSeq™-B0116 

Anti-Gr-1 
Biolegend 108465 

RB6-

8C5 
B305364 

TAGTGTAT

GGACACG 
commercial 

TotalSeq™-B0190 

Anti-CD274 (PD-L1) 
Biolegend 153608 MIH6 B307175 

TCGATTCC

ACCAACT 
commercial 

TotalSeq™-B0078 

Anti- CD49d 
Biolegend 103631 R1-2 B305995 

CGCTTGGA

CGCTTAA 
commercial 

TotalSeq™-B0117 

Anti-I-A/I-E (MHCII) 
Biolegend 107657 

M5/11

4.15.2 
B305131 

GGTCACCA

GTATGAT 
commercial 

 

Table 5.5| List of cell hashing antibodies used in CITE-seq 

Name 
Clone/ 

producer 

Lot 

number 
Barcode 

Sample 

stained 

TotalSeq™-B0301 anti-

mouse Hashtag 1 Antibody 

M1/42; 30-F11/ 

Biolegend 
B306476 ACCCACCAGTAAGAC 

Day 0, 

female 

TotalSeq™-B0302 anti-

mouse Hashtag 2 Antibody 

M1/42; 30-F11/ 

Biolegend 
B306447 GGTCGAGAGCATTCA 

Day 0,  

male 

TotalSeq™-B0303 anti-

mouse Hashtag 3 Antibody 

M1/42; 30-F11/ 

Biolegend 
B306444 CTTGCCGCATGTCAT 

Day 14, 

female 

TotalSeq™-B0304 anti-

mouse Hashtag 4 Antibody 

M1/42; 30-F11/ 

Biolegend 
B308313 AAAGCATTCTTCACG 

Day 14, 

male 

TotalSeq™-B0305 anti-

mouse Hashtag 5 Antibody 

M1/42; 30-F11/ 

Biolegend 
B304763 CTTTGTCTTTGTGAG 

Day 21, 

female 

TotalSeq™-B0306 anti-

mouse Hashtag 6 Antibody 

M1/42; 30-F11/ 

Biolegend 
B289041 TATGCTGCCACGGTA 

Day 21, 

male 
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5.14. CELLULAR INDEXING OF TRANSCRIPTOMES AND EPITOPES BY SEQUENCING 

After sorting, the CD11b+ cell suspensions containing an equal number of cells in each 

sample (50,000 cells) were pooled together and centrifuged at 500 g, 4 ºC for 10 min. Each pool 

consisted of a sample from each tested condition and replicates were separated between 

different pools in order to control for the batch effect (Table 4.4). Next, cells were suspended 

100 µl PBS and filtered through 40 µm Flowmi™ cell strainers (Scienceware). Next, cell 

density and viability were verified with an EVE™ Automatic Cell Counter (NanoEnTek Inc., 

USA), and if needed the cell suspension was diluted to a cell density of 700 – 1,200 cells/µl. 

Sample pools were run in triplicates, each replicate was loaded onto a separate chip well (10x 

Genomics). Subsequently, cell encapsulation and library preparation was performed with 

Chromium Controller (10x Genomics) and Chromium Next Gem Single Cell 3’ Reagent Kit v3 

with Feature Barcode technology for Cell Surface Protein (10x Genomics) according to the 

producer’s user guide (CG000185 Rev D).  

The library quality and quantity were assessed with a High-Sensitivity DNA Kit (Agilent 

Technologies, USA) on a 2100 Bioanalyzer (Agilent Technologies, USA). Sequencing was run 

on Novaseq 6000 (Illumina), with NovaSeq 6000 S2 Reagent Kit (Illumina), pair-end (Read 1 

– 28 bp, Read 2 -100 bp). The sequencing depth was targeted to 4 x 104 mRNA reads and 

7 x 103 Ab-oligo reads per cell. Sequencing was performed by the Genomics Core Facility in 

the Center of New Technologies, Warsaw; and by Paullina Szadkowska, M.Sc., Bartłomiej 

Gielniewski, Ph.D. and Bartosz Wojtaś, Ph.D. in the Laboratory of Molecular Neurobiology, 

Nencki Institute, Warsaw.   

5.15. CITE-SEQ DATA PROCESSING 

After sequencing, raw sequencing data (BCL files) were transformed to FASTQ files using 

the CellRanger v3.0.1 mkfastq113,117. Next, sequencing reads were mapped to a mouse genome 

GRCm38 (mm10) acquired from the 10x Genomics website and quantified using a CellRanger 

v.4.0.0 count function 113,117. Subsequent data analysis was performed in R v3.6.1 using Seurat 

v3.2.3 117,118. First, input data count matrices were split into mRNA, protein panel, and HTO 

(hashtags) groups. The HTO data was normalized with CLR method using Normalize Data 

function. The normalized HTO reads were demultiplexed with HTODemux function in order 

to identify the sample of origin of each read. Based on the demultiplexing results, multiplets 

and empty droplets were determined and filtered out. After filtering, the sample identities were 

assigned to the cell based on the HTO indices. Next, the data set was filtered to remove data of 
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poor quality: cell with the percentage of mitochondrial reads > 10%, the number of transcripts 

<300, and a low ratio of unique transcripts per gene (log10GenesPerUMI < 0.8) were excluded. 

All samples were integrated into one data set (for RNA and protein panel separately) with a 

standard Seurat workflow.   

The dimensionality reduction was performed with the PCA algorithm and data visualization 

in the 2D space was performed with the UMAP algorithm. Clustering analysis was performed 

using the FindClusters function. First, the clustree diagram was used for assessment of multiple 

clustering resolution and Res=1.1 was determined as an optimal value of the resolution. The 

differential expression analyses were performed with Find All Markers function applying the 

following parameters: min.pct=0.5, average log fold-change =0.25. The top expressed cluster 

genes and immune markers (Supplementary Table 1) were used to assign cell identities to 

clusters. The applied resolution was intentionally selected in a way to return a higher number 

of clusters than the number of expected cell populations (based on scRNA-seq analysis), in 

order to properly asses the diversity of cell types and cell states in obtained data set. Clusters 

that showed similar transcriptional patterns implying the same functionality were merged. The 

computational analysis of CITE-seq data was performed in cooperation with Paweł Segit, M.Sc. 

from the Laboratory of Molecular Neurobiology, Nencki Institute, Warsaw. 

5.16. ANALYSIS OF THE INTERFERON-RELATED GENE SIGNATURE 

The list of interferon-response genes was downloaded from the INTEFEROME v 2.0 

database 125. The applied search conditions included interferons of any type, subtype, and 

treatment concentrations. Genes obtained in both in vitro and in vivo experiments, in mouse and 

human were included. Only genes expressed in the brain, and by the cells overlapping with the 

following categories were included: microglial cell, blood monocyte-derived macrophages, 

monocyte-derived macrophages, derived macrophages, macrophages, Peripheral Blood 

Mononuclear Cells, bone marrow-derived macrophages. In total, 469 unique genes were 

identified, out of which 453 were found in the CITE-seq data set, within clusters belonging to 

microglia (MG), monocytes/macrophages (Mo/MФ), and DCs populations. The heatmap 

demonstrating expression of the interferon-response genes was generated using Complex 

Heatmap v2.6.2 package, the hierarchical clustering was performed using ward.D2 method, and 

a dendrogram was ordered with a minimum distance.   

For the IFN score, genes encoding proteins that belong to IFI, IFITM, and IRF protein 

families and were expressed in the CITE-seq data set in the clusters belonging to MG, Mo/MФ, 
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and DCs populations were identified. The identified genes were as follows: Ifi211, Ifih1,  Ifi44,  

Ifi206,  Ifi203, Ifi209, Ifi205, Ifi208, Ifi214, Ifi204, Ifi207, Ifi213, Irf9, Irf3,  Ifitm5, Ifitm1, 

Ifitm3, Irf7, Irf5, Irf2, Irf8,  Irf2bp1,  Ifitm10, Irf2bp2, Ifitm6,  Ifitm2,  Ifi35,  Irf1,  Irf4, Irf2bpl, 

Ifit1, Ifit2, Ifit3b, Ifi27, Ifit3, Ifi47, Ifi27l2a, Ifit1bl1. Next, the distribution of expression level 

across all cells for each of the genes was inspected individually on feature plots. The expression 

pattern was similar for all the genes, except  Irf7 and Ifitm2 that were excluded from further 

analysis. The mean expression of the identified genes (38) was calculated per cell generating 

the IFN score. 

5.17. ANALYSIS OF GAM PROPORTION IN PUBLIC HUMAN DATA SETS 

For the analysis of proportions of distinct subpopulations within the GAM population, two 

public data sets were used: CyTOF data generated from human GBMs (n=14)72 and scRNA-seq 

data from primary human GBMs 77. For the CyTOF72 data analysis, fcs files were downloaded 

from the data repository (https://data.mendeley.com/datasets/jk8c3c3nmz/draft?a=c0a9d8dc-

8ac2-4942-baf9-208de7a8c310). The downloaded data set contained preprocessed data of 

living cells from individual patients. Two experimental batches were merged using 

CytofBatchAdjust package 126 and the analysis was performed with R 4.0.5 according to the 

Nowicka et al. (2019) workflow 127. The mass cytometry data were transformed with a cofactor 

5 using an inverse hyperbolic sine (arcsinh) function. Myeloid cell fraction was obtained by 

excluding cells with expression levels of CD45 = 0, CD11b < 1.5 , CD3 > 1.5 . Only data for 

patients with GBM and with cell count > 8·105 were taken for further analysis. Next, 8·105 cells 

were randomly selected from each sample, and data were normalized between 0 and 1 to the 

99th percentile of the merged sample. Clustering was performed with the k-nearest neighbors 

method using Rphenograph algorithm 128. Identified clusters were manually annotated and 

merged based on the similarity of antigen expression. The analysis of CyTOF data was done in 

cooperation with Karol Jacek, M.Sc. from the Laboratory of Molecular Neurobiology.  

For scRNA-seq data set77 analysis the cell type proportions were calculated based on cell 

annotations provided by the authors using a cell annotation matrix for human GBM scRNA-seq 

data set downloaded from https://www.brainimmuneatlas.org/download. 

5.18. IMMUNOHISTOCHEMISTRY ON BRAIN SLICES 

For tissue collection for histology, mice were anesthetized and transcardially perfused using 

first PBS and next 4% paraformaldehyde (PFA). Brains were dissected and post-fixed in 4% 

PFA overnight, then placed in 30% sucrose for 2 days, and then embedded in Tissue-Tek O.C.T 
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Compound. Cryosections (10 μm) were cut and stored at -80°C. Cryosections were blocked in 

PBS containing 10% donkey serum in 0.1% Triton X-100 solution for 2 hours and incubated 

overnight at 4 °C with rat anti-Gal-3 and rabbit anti-Tmem119 antibodies. Next, sections were 

washed in PBS and incubated with corresponding secondary antibodies for 2 hours at room 

temperature. Nuclei were counter-stained with DAPI (0.1 mg/mL). Images were obtained on a 

Leica DM4000B fluorescent microscope. All antibodies were diluted in 0.1% Triton 

X-100/PBS solution containing 3% of donkey serum. For reagent specifications, catalog 

numbers, and concentrations see Table 5.6. The immunohistochemistry staining was performed 

by Kamil Wojnicki, M.Sc. from the Laboratory of Molecular Neurobiology, Nencki Institute, 

Warsaw. 

Table 5.6 | Antibodies used for immunohistochemistry 

Reagent  Manufacturer Cat. number Clone Fluorophore Dilution 

anti-Gal-3 eBioscience 125408 M3/38 
Alexa Fluor 

648 

1:200 FC 

1:100 IF 

anti-

TMEM119 

pAb 

Synaptic 

Systems 
400002 - - 1:500 

anti-MHC II ThermoFisher 14-5321-82 M5/114.15.2 - 1:200 

anti-rabbit 

Alexa Fluor 

488 pAb 

Invitrogen A21206 - 
Alexa Fluor 

488 
1:1000 

anti-rat Alexa 

Fluor pAb 
Invitrogen A21208 - 

Alexa Fluor 

488 
1:1000 

anti-guinea pig 

Cy5 pAb 

Jackson 

Immunoresearch 
706-175-148 - Cy5 1:1000 

5.19. PRIMARY MICROGLIA AND GL261 CO-CULTURES 

Primary microglial cultures were prepared from cerebral cortices of P0–P2 old C57BL/6J 

male and female mice as described in Walentynowicz et al. (2018) 50. Microglial cells were 

seeded onto round glass coverslips at 5 x 105 per well in a 6-well plate and GL261 cells were 

seeded onto 0.4 µm inserts (Falcon) at 1.25 x 105 cells per insert. Twenty four hours after 

seeding, the inserts were transferred into the plate with microglial cells and co-cultured for 48h. 

5.20. QUANTITATIVE GENE EXPRESSION ANALYSIS 

RNA was isolated using RNeasy Mini Kit (QIAGEN, USA) and RT-PCR was performed 

using SuperScript III Reverse Transcriptase (Invitrogen) on 500 ng of total RNA. Quantitative 

real-time PCR was performed on 40 ng of cDNA in duplicates using TaqMan™ Fast Advanced 
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Master Mix (ThermoFisher) and TaqMan™ Gene Expression Assay (FAM) probes 

(ThermoFisher). Following probes were used: Cd74 (Mm01262765_g1), H2-

Aa (Mm00439211_m1), H2-Ab1 Mm00439216_m1, H2-Eb1 (Mm00439221_m1), Gapdh 

(Mm99999915_g1), Actb (Mm00607939_s1). Ct values were normalized to the endogenous 

expression of Actb and Gapdh. Similar results were obtained for both housekeeping genes, thus 

only Actb is presented. Delta Ct values obtained for technical replicates (n=2) were averaged 

and the linear model was built only with biological replicates (n=2). Apart from sex, also a litter 

of animals and genes were used as covariates. The analysis was done with R statistical 

environment. 

5.21. DATA VISUALIZATION  

The graphical schemes demonstrating experimental design were prepared with 

BioRender.com (Figure 6.6 a, 6.13a, 6.22 a) or Adobe Illustrator v24.1 (Figure 6.7a, 6.9a, 

6.16b, 6.20a, 6.21 a). The flow cytometry graphs were prepared with FlowJo software v10.5 

and GraphPad (Figure 6.10 c,d; 6.11 d,e; 6.12 d,e). The remaining graphs were prepared with 

R v 4.0.3 with the use of ggplot2 v3.3.3 129, ggpubr v0.4.0, ggrepel v0.9.1, ggridges v0.5.3, 

VennDiagram v1.6.20, Complex Heatmap v2.6.2 130, clusterProfiler v3.12.0 122 and Seurat 

v3 117,118 packages and graphically arranged with Adobe Illustrator v25.4.  

Following graphs types were employed: 

(1) Boxplot (Figure 6.1a; 6.2 e,f; 6.21 b,d); upper and lower hinges of the boxplots 

correspond to 25th and 75th percentile respectively, bar in the center represents median 

value and whiskers range from -1.5 to 1.5 of the interquartile range (IQR). Outliers defined 

as observations lower than 1.5 IQR or higher than 1.5 IQR are represented as single points. 

Individual data points were shown with dot plots (geom_dotplot) layered over boxplots 

(geom_boxplot).   

(2) The “knee” plots (Figure 6.3; 6.5); demonstrating the quality of scRNA-seq and 

sequencing saturation plots data were generated as part of the Cell Ranger pipeline and 

downloaded from the summary Html file.  

(3) Density plots (Figure 6.6 c; 6.11 b, 6.16 c; 6.19 c; 6.20 c,d; 6.21 c,e); kernel density 

estimate demonstrating the distribution of cells along with an expression level of a given 

gene/protein/score, generated with function geom_denisty_ridges.  

(4) UMAP/tSNE plots (Figure 6.7 b; 6.8 a,d; 6.9 a; 6.11 c; 6.13 c; 6.16 a; 6.17 a; 6.18 a, 

6.20 a; 6.21 a); demonstrating scRNA-seq/CITE-seq metadata (clusters, conditions, sex) 
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across all cells arranged in 2D space with UMAP or tSNE algorithm, prepared using 

function geom_jitter, points opacity was set to 70% (alpha=0.7), and cells were plotted in 

random order to avoid groups overlaying.  

(5) Feature plots (Figure 6.8 e; 6.10 a,b; 6.11 a; 6.12 a-c; 6.13 d-h, 6.14 a; 6.18 b-d; 6.19 b; 

6.21 a); demonstrating scRNA-se/CITE-seq feature level (gene expression, protein level, 

score value) across cells arranged in 2D space with UMAP or tSNE algorithm, extreme 

values of gene/protein expression level were cut to  99.9th percentile (scRNA-seq) or 1st 

and 99th percentile (CITE-seq, the bottom extreme values were also transformed due to 

data normalization, which yielded minimum values lower than 0), prepared using function 

geom_jitter.  

(6) Grid point plot (Figure 6.7 c); demonstrating expression level of selected genes from 

the immune marker panel  (Supplementary Table 1) per cell cluster (mean), dot size 

corresponds to the percentage of cells showing expression of a given marker, generated 

with function geom_point. 

(7) Pie chart (Figure 6.7 d); generated with function geom_bar()+coord_polar(“y”, start=0). 

(8) Heatmap (Figure 6.6 b; 6.8c; 6.9 c; 6.13 b; 6.19 a); heatmaps were prepared using either 

a feature level per cell – then each column represents an individual cell, or an averaged 

feature level in a given cell population. Plots were generated using HTOHeatmap, 

DoHeatmap functions from Seurat workflow or heatmap function from ComplexHeatmap 

package. If hierarchical clustering was applied, the dendrograms were generated with the 

ward.D2 method and ordered by a minimum distance. 

(9) Network plots (Figure 6.9 d,e); results of the Gene Ontology analysis of biological 

processes were represented with cnetplot function from clusterProfiler package, top 5 terms 

are demonstrated.   

(10) Violin plots (Figure 6.8 f; 6.9 f,g; 6.16 d,e; 6.17 d); generated with function 

geom_violin, with default scale value ("area" - all violins have the same are) and no 

trimming.  

(11) Gene ontology 

(12) Scatter plot (Figure 6.9 b, 6.20 e); scatter plot generated using function geom_jitter. 

Figure 6.9 b supplemented with Venn Diagram representing the number of DE genes that 

were common or specific for each group, Venn Diagram was generated with venn.diagram 

function from VennDiagram package. 
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(13)  Stacked bar plot (Figure 6.6 d; 6.14 b; 6.21 b-d); representing proportion of selected 

cell population in given condition/patient, generated using function 

geom_bar(position=”fill”) or geom_bar(position=”stack”).  

(14) “Pseudo-flow cytometry” graphs based on CITE-seq protein level (Figure 6.15; 6.16 f; 

6.17 b; 6.18 f); generated with the use of the functions geom_jitter (individual points), 

geom_denisty_2d (lines of the contour plot demonstrating binned cell frequency), 

stat_denisty_2d (fill with the contour plot, the darker color corresponds to higher cell 

density), gates were set manually by drawing diagonal lines. The plots are supplemented 

with density plots demonstrating distribution of expression level of a single parameter and 

bar plots demonstrating generated with function geom_bar, demonstrating absolute number 

of cells from given population in a specified gate.  

(15) Half-volcano plots (Figure 6.17c; 6.18e), represent DE genes obtained with Wilcoxon 

test comparing cells from a given cluster (Mphi_1, Mphi_2, Mo-DCs, cDCs) to all cells 

from the Mo/Mphi population (Mo, Int, Mphi_1, Mphi_2, Mo-DCs, cDCs), padj was 

calculated with Bonferroni correction, plot generated with function geom_jitter, text labels 

were assigned using geom_text_repel. 

(16) Filled density plots (Figure 6.18 d, 6.19 d); demonstrate the frequency of a given cell 

population along with the expression level of selected genes, generated with function 

geom_denisty (position="fill").  

(17) Volcano plots (Figure 6.20b); represent DE genes obtained with Wilcoxon test 

comparing male and female cells within a given population, padj was calculated with 

Bonferroni correction, plot generated with function geom_jitter, text labels were assigned 

using geom_text_repel. 
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6. Results 

6.1. KINETICS OF THE TDT+ LUC+ GL261-IMPLANTED TUMOR GROWTH 

A murine GL261 glioma model was employed in the present study. The GL261-derived 

tumors carry K-ras and p53 point mutations and are frequently used as syngeneic models of 

gliomas 99. These tumors recapitulate many characteristics of human glioblastomas (GBMs) 131. 

To verify the dynamics of the tumor growth, tdT=Luc+ GL261 cells were implanted 

intracranially to 10-week-old male C57BL/6 mice and imaged in vivo with the Xtreme platform 

every 7 days (Figure 6.1 a-b). The bioluminescent imaging allowed detection of the implanted 

tumors already at the 7 day post-implantation and demonstrated a significant increase of the 

tumor size in time (ANOVA (day) F2,69= 5.435, pval=0.006)). Importantly, the tumor size was 

found to be dependent on sex (ANOVA (sex) F1,69= 4.877, pval=0.031)) (Figure 6.1 a), as 

females showed smaller tumor sizes than males. 

 

Figure 6.1 | Growth kinetics of the tdT+Luc+ GL261 murine gliomas. (a) Quantification of bioluminescent 

imaging at 7,14 and 21 day post-implantation. Two-Way ANOVA and Tukey’s HSD post hoc test was performed. 

The results of the Tukey’s HSD test for between days comparison are shown above the bars. Upper and lower 

hinges of the boxplots correspond to 25th and 75th percentile respectively, bar in the center represents median value 

and whiskers range from -1.5 to 1.5 of the interquartile range (IQR). Outliers defined as observations lower than 

1.5 IQR or higher than 1.5 IQR are represented as single points. (b) Representative tumor images. Observations 

corresponding to the selected images are marked with thick black border on the Figure 6.1a. 

6.2. OPTIMIZATION OF DISSOCIATION AND FLUORESCENCE-ACTIVATED CELL 

SORTING PROCEDURES 

Both scRNA-seq and CITE-seq required enrichment of the CD11b+ myeloid cells with 

fluorescence-activated cell sorting (FACS). Prior to FACS, the brain tissue needs to be 

dissociated to obtain a single cell suspension. The procedure optimized in the Laboratory 

of Molecular Neurobiology, which yields the best sample purity and viability includes 
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enzymatic digestion with the papain enzyme mix (Neural Tissue Dissociation Kit with papain, 

Miltenyi Biotec). However, it needs to be taken into consideration whether the epitopes of 

interest are not affected during the steps of enzymatic digestion.  

Papain digests the epitopes of Tmem119 63, a surface protein that was included in the protein 

panel for the CITE-seq analysis. To preserve the Tmem119 epitopes, papain was substituted 

with DNase I (0.5 mg/ml), and brain tissue dissociation was performed according to the 

standard procedure (see Methods). Both dissociation methods allowed obtaining a single cell 

suspension, and identification of CD11b+ population with flow cytometry (Figure 6.2 a,b). The 

fraction of alive cells was significantly lower in the DNaseI than in papain digested samples 

(Papain median=92.1%, DNase I median=55.8%, Wilcoxon test p = 7.1·10-5) (Figure 6.2 

e). However, the majority of CD11b+ cells were found in the fraction of alive cells, as indicated 

by the gating on the Live/Dead stain, Pacific Blue A channel (Figure 6.2 c,d). The percentage 

of live CD11b+ cells was also lower in the samples digested with DNase I than in papain-

digested samples, although the difference was minor (Papain median=96.3%, DNase I 

median=93.8%, Wilcoxon test p = 0.00077) (Figure 6.2 f). Therefore, in the procedures 

requiring assaying Tmem119, samples were processed with DNase I. Additionally, all sorting 

procedures included dead cells exclusion with a viability dye (see Methods). 

 

Figure 6.2 | Assessment of cell viability in the brain tissue preparations dissociated with Papain and DNaseI. 

(a,b) CD11b+ gate with backgating of “Ungated cells” on FSCxSSC and singlets on Pacific Blue  (Live/Dead 

stain) x SSC for Papain – a, and DNase I preparation -b. (c.d) Gate for alive cells for CD11b+ cells without dead 

cells exclusion in Papain – c, and DNase I preparation -d. (e,f) Quantification of alive cells in all singlet cells (e) 

and in CD11b+ cells  (f) in cell preparation for scRNA-seq (Papain) and CITE-seq (DNase I) (two-sided Wilcoxon 

Rank Sum Test. Upper and lower hinges of the boxplots correspond to 25th and 75th percentile respectively, bar in 

the center represents median value and whiskers range from -1.5 to 1.5 of the interquartile range (IQR)). Outliers 

defined as observations lower than 1.5 IQR or higher than 1.5 IQR are marked with black points. 
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6.3. QUALITY ASSESSMENT OF THE SCRNA-SEQ READS  

The scRNA-seq capability to assess the cell heterogeneity heavily depends on the number 

of cells included in the analysis. However, increasing the cell number loaded onto a single well 

of the encapsulation chip is connected with an elevated number of multiplets that can negatively 

influence the computational analysis. For the scRNA-seq, the targeted number of cells was 

equal to 5,000 cells/sample, which is within the recommended range (1,000-10,000 cells) and 

provides a high number of cells with a relatively low number of multiples (4 %) 113,132.  

The “knee” plots showing the number of unique RNA reads (UMI – unique molecular 

identifier) obtained per single gel-bead in emulsion (GEM), demonstrated a good quality of the 

obtained data. The “knee” plots allow separating GEMs that contained cells, from the empty 

GEMs in which only free-floating mRNA was amplified. The empty GEMs are indicated by a 

sudden drop of the UMI counts (Figure 6.3).  

The obtained number of cells in each sample was close to the number of targeted cells 

(Table 6.1), demonstrating accurate cell loading during the encapsulation procedure. Samples 

were sequenced in pairs (~10,000 cells per sequencing run) on the HiSeq1500 (Illumina) 

instrument (up to 4 x 108 total reads), which allowed to obtain ~36 thousand reads per cell and 

a high level of sequencing saturation (mean=87% ) (Table 6.1).  

  

Figure 6.3 | Knee plots for assessment of the quality of reads obtained for scRNA-seq.  The reads identified 

as background were removed from further analysis.  
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Table 6.1 | The scRNA-seq sequencing details before and after applying filtering steps. 

  female male     

  

control 

rep1 

control 

rep2 

tumor 

rep1 

tumor 

rep2 

control 

rep1 

control 

rep2 

tumor 

rep1 

tumor  

rep2 
mean sum 

cells identified 5,223 4,870 5,802 5,579 4,873 5,301 4,402 5,009 5,150 41,059 

reads per cell 42,512 33,630 31,190 31,680 35,228 37,195 43,450 31,842 36,412   

median genes 

per cell 
1,008 1,092 1,099 1,067 984 1,008 1,219 1,091 1,071  

saturation 90.1% 87.0% 83.8% 84.7% 88.6% 89.5% 86.2% 84.9% 87%   

cells after 

filtration 
5,167 4,787 5,654 5,491 4,820 5,239 4,306 4,937 5,066 40,401 

genes after 

filtration 
12,520 12,720 13,424 13,192 12,636 12,781 12,978 13,030     

6.4. ANTIBODY-OLIGONUCLEOTIDE CONJUGATION  

CITE-seq utilizes antibodies conjugated with oligonucleotide tags (Ab-oligos) for 

assessment of the surface protein level. Before cell loading to an encapsulation chip, cells are 

stained with the Ab-oligos. Subsequently, the oligonucleotide tags are indexed with the cellular 

barcode and processed through library preparation and sequencing steps similarly to the mRNA 

molecules. In this study, we utilized a panel of 10 Ab-oligos for the assessment of the surface 

protein expression, 7 of which were commercially available (TotalSeq™, Biolegend), and 

3 were conjugated in-house. To obtain an optimal conjugation efficiency, three ratios of the 

antibody: oligonucleotide volumes in the conjugation mixture were tested. The Ab-oligo 

conjugation was assessed with SDS-PAGE along with the positive control 

(“+ctrl” - commercially available Ab-oligo conjugate TotalSeq™-A0014 anti-mouse/human 

Figure 6.4 | SDS-PAGE of the antibody-oligonucleotide conjugates. (a) Assessment of the antibody and 

oligonucleotide ratio in the conjugation mixture, from the left: L- protein size marker, +ctrl – commercial 

antibody-oligonucleotide conjugate TotalSeq™-A0014 anti-mouse/human CD11b Antibody (Biolegend) 

used as a positive control, no oligo – CD74 antibody without conjugation used as negative control, 1:3/ 1:5/ 

1:10 – tested ratios of antibody and oligonucleotide amounts: 1 part of antibody and 3, 5 and 10 parts of 

oligonucleotide respectively.  (b) Assessment of conjugation efficiency  of all antibody-oligonucleotide 

conjugates mixed in a ratio 1:10. 
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CD11b Antibody, Biolegend), and the negative control (“no oligo” -CD74 antibody before 

conjugation) (Figure 6.4 a).  Bands observed for the unconjugated antibody (no oligo) represent 

the light and heavy antibody chain. Bands that are observed at higher molecular weights 

represent the Ab-oligo conjugate. A single antibody can be conjugated with more than one 

oligonucleotide molecule, which is demonstrated by multiple bands of the Ab-oligo conjugates. 

The conjugation at 1:10 ratio resulted in the most intense Ab-oligo bands, which best 

recapitulated the band pattern obtained for the positive control. Thus, the 1:10 ratio was applied 

for the conjugation of all antibodies, and the successful conjugation was confirmed with SDS-

PAGE (Figure 6.4 b). 

6.5. QUALITY ASSESSMENT OF THE CITE-SEQ READS 

The CITE-seq libraries consist of two library types: mRNA that is prepared in the same 

way as for the scRNA-seq experiment, and Ab-oligo that contains reads generated from the 

Ab-oligo conjugates (both protein panel and cell hashtags). The mRNA and Ab-oligo libraries 

are separated, which allows adjusting sequencing depth to each library type. 

In the CITE-seq experiment, it was aimed to achieve 14,000 (Exp1) and 16,000 (Exp2) 

cells in a single replicate, and a minimum of 35,000 RNA reads and 10,000 Ab-oligo reads per 

cell. The targeted number of the RNA reads provided good saturation in a previous scRNA-seq 

experiment. For the Ab-oligo libraries, the recommended sequencing depth ranges 

between 5,000 -7,000 reads per cell. However, to make sure that the obtained depth will allow 

separating samples that were barcoded with the hashtag antibodies and assessing the expression 

level of proteins included in the Ab-oligo protein panel, the targeted number of Ab-oligo reads 

per cell was increased to 10,000. 

  

 Exp1 Exp2 mean sum 

 Rep1 Rep2 Rep3   

Cells identified 13,978 11,055 16,324 13,785 41,357 

RNA reads per cell 35,863 67,527 44,522 49,304  

median genes per cell 1,694 2,523 1,496 1,904  

Saturation 77.6% 77.7% 78.8% 78.03%  

Ab-oligo reads per cell 12,031 25,489 17,432 18,317  

Cells post filtration 11,632 9,217 1,548  22,397 

Table 6.2 | The CITE-seq sequencing details before and after applying filtering steps. 
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The CITE-seq experiment was divided into two rounds. First (Exp1) included one replicate 

(Rep1), in which all the targeted sequencing parameters were achieved (Table 6.2) and the 

cell-containing GEMs were clearly separated from the background GEMs (Figure 6.5). 

Additionally, the computational analysis showed that all the Ab-oligo barcodes that were 

included in the protein and cell hashing panel (Table 5.3 and 5.4) can be identified. 

Upon verification of the successful RNA and Ab-oligo libraries sequencing, the CITE-seq 

was performed for the remaining replicates (Exp2: Rep2 and Rep3). In Rep3, the “knee” plot 

indicated a failure preventing reliable identification of the cell-containing GEMs, which was 

inspected in the subsequent computational analysis  (see Figure 6.6). The number of obtained 

cells differed from the targeted number. Still, the minimal sequencing depth was achieved and 

all samples showed a similar saturation rate (Table 6.2). Surprisingly, the saturation rate was 

lower than in the scRNA-seq experiment, although exceeding the targeted number of reads per 

cell. The lower saturation rate could be connected with the higher number of genes per cell 

detected in the CITE-seq (mean 1,904), as compared with the scRNA-seq (mean= 1,071). This 

could be achieved due to employing a new generation of the 10x Genomics chemistry for the 

CITE-seq library preparation (v3), which offers improved RNA capture efficiency as compared 

to the chemistry employed in the scRNA-seq experiment (v2) (see Methods). The saturation 

plots indicated that the saturation was already achieving plateau, thus increasing the number of 

reads by additional sequencing would not provide a substantial improvement of the library 

complexity (Figure 6.5 b).  

Figure 6.5 | Plots for the CITE-seq quality assessment. (a) Knee plots demonstrating separation of the 

cell containing and background GEMs. (b) Sequencing saturation plots demonstrating the relation between 

increasing number of reads per cell and saturation of the sequenced reads.  
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6.6. SAMPLE IDENTIFICATION WITH THE CELL HASHTAG-OLIGO BARCODES 

Figure 6.6 | Sample identification with the cell hashtag-oligo barcodes. (a) Schematic representation of the 

hashing procedure, prepared with BioRender.com. (b) Heatmaps demonstrating the number of HTO barcodes 

identified per GEM, a dotted line marks multiplets and empty GEMs that were discarded prior to further analysis. 

(c) Ridge plots showing expression of single, sample-specific hashtag in each sample after filtering the multiplets 

and empty GEMS. Example for replicate 1is shown. Replicate 2 and 3 are shown in the Supplementary Figure 1. 

(d) Final number of cells obtained after all filtering steps for all conditions and replicates. 
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Cell hashing is a method of cell samples barcoding with the Ab-oligo conjugates that allows 

mixing different samples before being loaded onto the chip for encapsulation. Such an approach 

allows reducing the costs and increasing the number of replicates. In the procedure of 

encapsulation, a certain fraction of GEMs consists of multiple cells (multiplets), which can 

negatively affect the computational analysis. The higher number of cells loaded, the higher is 

the multiplets rate. Thus, in the standard scRNA-seq presented in this work, the number of 

target cells was limited to 5,000, which corresponds to the multiplet rate of around 4%. Cell 

hashing allows identifying multiplets consisting of cells from distinct samples and thus 

discarding the majority of the multiplets from further analysis. Thanks to that, the total number 

of target cells can be increased even up to 20,000 target cells/well 116, without the risk of having 

a very high multiplet rate.  

In the CITE-seq procedure, cell samples from all the conditions were given a specific cell 

hashtag-oligo barcode (HTO), mixed and loaded onto a single well (Figure 6.6 a). This 

approach allowed overcoming batch effects, generated during encapsulation, library 

preparation and sequencing, as all those steps were performed simultaneously for all the 

conditions. A total of three replicates in two independent experiments were prepared.  

Following sequencing, reads were assigned to samples using the HTO barcodes. As expected, 

GEMs in which multiple cells with different HTOs were encapsulated, appeared as readouts 

with more than one type of HTO barcode and were assigned as multiplets (Figure 6.6 b). Next, 

multiplets and GEMs with no HTO barcode were discarded from further analysis. 

In replicate 3 (Rep3), a large fraction of such GEMs was obtained, which could result from an 

encapsulation failure or a premature breakdown of the GEM emulsion. Since a fraction of 

GEMs in the Rep3 appeared as singlets, we decided to include them in further analysis, although 

the relatively small number. After filtering out the empty GEMs and multiples, all samples 

showed the presence of a single HTO type, which allowed for a clear distinction from the other 

samples (Figure 6.6 c).  

Following the sample identification, cells were filtered with the quality control 

parameters (parameters with thresholds - see Methods, Supplementary Figure 2). The final 

number of cells obtained from each replicate differed due to the high multiplet rate in the Rep3 

(Rep1- 11,632, Rep2- 9,217, Rep3- 1,548). Still, each replicate showed a similar contribution 

to all the tested conditions (Figure 6.6 d).  
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6.7. IDENTIFICATION OF IMMUNE CELL TYPES ACROSS THE GLIOMA-INFILTRATING 

MYELOID CELLS WITH SCRNA-SEQ 

Figure 6.7 | Cell type identification based on scRNA-seq expression profiles. (a) Scheme of the experimental 

workflow. The used brain image was modified from Database Center for Life Science. (b) t-SNE plot 

demonstrating clustering obtained for each group (female control, female tumor, male control, and male tumor), 

two biological replicates were combined. Clusters annotations: MG - microglia, preMG - premature microglia, Mo 

- monocytes, Int - intermediate monocyte–macrophage, MΦ - macrophages, BAM - CNS border-associated 

macrophages, DCs - dendritic cells, Ncam1+ - Ncam1-positive cells, NK - natural killer cells, NKT - natural killer 

T cells, B cells - B lymphocytes, T cells - T lymphocytes. (c) Expression of the “signature” genes selected from 

the immune marker panel for identification of a cluster cell type (Supplementary Table 1). (d) Pie charts 

demonstrating distribution of the identified cell types across samples. 

 

https://www.nature.com/articles/s41467-021-21407-w#MOESM1
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To assess the heterogeneity of the myeloid cells infiltrating gliomas, we performed the 

scRNA-seq on CD11b+ cells sorted from male and female brains of naïve and GL261-implanted 

animals (pool of 2 animals in each replicate, 2 replicates) (Figure 6.7 a). The analysis was 

performed on the 14th day post-implantation that corresponds to a pre-symptomatic stage of 

tumor progression, in which there are no signs of necrosis, and BM-derived macrophages and 

microglia occur in equal proportions 57. 

The scRNA-seq analysis identified 40,401 cells and 14,618 genes after applying the quality 

control filtering steps (see Methods). To assess the transcriptomic cell diversity, the data was 

projected onto the two-dimensional space with t-distributed stochastic neighbor embedding 

(t-SNE). The graph-based clustering was performed for each condition separately, using the 

same value of the resolution parameter that controls the number of obtained clusters 

(See methods). The number of clusters obtained for male and female animals within the same 

condition was similar, whereas between conditions the number of clusters was higher for the 

tumor-bearing brains compared to the brains of naïve animals (male control= 9, female 

control=8, male tumor 13, female tumor= 13), reflecting an increased cell diversity in the tumor 

microenvironment. 

The cell types of the obtained clusters were identified using significantly overexpressed 

genes in each cluster and an immune cell marker panel, designed with the literature-based 

markers (Figure 6.7 b,c, Supplementary Table 1). The naïve brains consisted mainly of 

microglia (MG) that constituted 92% and 90% of the CD11b+ cells in males and females, 

respectively. Additionally, naïve brains showed the presence of a microglial cluster that 

exhibited increased expression Csf1, Mcm5, Ifit3 genes, indicative of a premature state (pre-

MG) 133. 

Other cell types found in the naïve brains included CNS border-associated macrophages 

(BAMs), and a minor fraction of dendritic cells (DCs), natural killer cells (NK), and monocytes 

(Mo) that were found only in male brains (Figure 6.7 d). Contrastingly, the tumor-bearing 

brains showed a smaller fraction of MG (females- 64%, males- 65%), due to infiltration of the 

BM-derived monocytes and macrophages (Mo/MΦ) from the periphery.  

Among the Mo/MΦ population, 3 clusters were distinguished for both males and females. 

Those clusters were identified as monocytes (Mo) that had high expression of Ly6c2 and Ccr2 

genes, typical for infiltrating monocytes; differentiated macrophages (MΦ) which expressed 

Ifitm2, Ifitm3, S100a6 at a high level, but showed low expression of Ly6c2 and Ccr2; and a 
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monocyte-to-macrophage intermediate population (Int) that had increased expression of both 

Ly6c2, Ccr2 and Ifitm2, Ifitm3, S100a6 genes.  

Additionally, the CD11b+ cells from the tumor-bearing brains consisted of DCs, NK, natural 

killer T cells (NKT) and a marginal fraction of B and T cells. Expression of CD11b is not typical 

for lymphocytes, thus the presence of NKT, T and B cells was not expected. However, detection 

of rare CD11b+ lymphocytes in the brain during viral infections has been already reported 134,135. 

Since the main aim of this work was to dissect the transcriptional heterogeneity of the brain 

resident microglial cells and BM-derived monocytes and macrophages within the tumor 

microenvironment, the further analysis focused on the MG, Mo/MФ, and BAMs that are the 

most abundant cell populations found in the glioma TME.  

6.8. SCRNA-SEQ EXPRESSION PROFILES DISTINGUISH MICROGLIA AND 

MONOCYTES/MACROPHAGES  

 

Cells belonging to clusters identified as MG, Mo/MФ, and BAMs were selected. The cells 

from all conditions were combined and re-clustered. The re-clustering resulted in obtaining 

three separate groups corresponding to MG, Mo/MФ, and BAMs, as demonstrated by the 

projection onto the two-dimensional space with a Uniform Manifold Approximation and 

Projection (UMAP) algorithm (Figure 6.8 a). The composition of the obtained groups was 

largely corresponding with the identity of cell clusters obtained for separate conditions (Figure 

6.8 b). Thus, demonstrating a predominance of a biological signal over technical artifacts or 

batch effects.  

To confirm the identity of the obtained groups, differential expression analysis was 

performed. Among the top 10 most highly upregulated genes, we found commonly 

acknowledged canonical microglia genes – P2ry12, Sparc, Tmem119, Gpr34, Selplg, Cx3cr1 

61,136 in MG group; genes highly expressed by monocytes – Ly6i, Ly6c2, and macrophages – 

Ifitm3 38 in the Mo/MΦ group, and genes previously reported for BAMs– Apoe, Ms4a7, Mrc1 

137 in the BAMs group (Figure 6.8 c).  

In search of marker candidates that could be applied for the separation of microglia and 

macrophages in the TME, the specificity and expression rate of the top expressed genes were 

examined. Tmem119, Cx3cr1, P2ry12, Gpr34, Olfml3, and Sparc were enriched only in MG 

(Figure 6.8 c, Supplementary Figure 3). Whereas the other genes expressed at a high level in 

MG were also highly expressed in BAMs (Cd81), BAMs and Mo/MΦ (Hexb, Cst3) or were 

found only in a fraction of MG cells (P2ry13 gene was expressed by less than 75% of MG cells) 

(Supplementary Figure 3). For Mo/MΦ, we found enriched expression of previously reported 
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Figure 6.8 | scRNA-seq expression profiles distinguish between microglia and 

monocytes/macrophages. (a) Schematic representation of selection of cell clusters (as MG, Mo/MФ and 

BAMs ) from clustering performed for each condition separately, and re-clustering those cells for all the 

conditions combined. (b) Projection of the clusters from first clustering onto the cell clusters obtained after 

re-clustering for combined conditions. (c) Heatmap demonstrating top 10 differentially expressed genes 

ranked by the average log fold-change value, all with adjusted (Bonferroni correction) p-value < 10-100. 

New marker candidates are given in bold. (d) UMAP plot demonstrating distribution of the control- and 

tumor-derived CD11b+ cells across cell populations for the combined clustering. (e) Feature plots showing 

levels of MG and Mo/MФ scores (average expression of the selected genes that are given in brackets). (f) 

Violin plots comparing level of MG and Mo/MФ scores between each other and  between the control and 

tumor condition (two-sided Wilcoxon signed-rank test). 
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genes such as Ifitm2,  S100a6, and S100a11 38, as well as novel genes, namely Ms4a4c, Lgals3, 

Crip1, and Isg15 (Figure 6.8 c, Supplementary Figure 3). Ifitm3 was highly expressed by the 

Mo/MΦ population, but appeared also in a substantial fraction of MG, showing its low 

specificity towards monocytes/macrophages within glioma TME. Lgals3 was found to be a 

promising marker candidate as it encodes surface protein Galactin-3 (Gal-3) and its expression 

was enriched predominantly in the Mo/MΦ. BAMs showed high expression of Apoe and 

Ms4a7, which were recently proposed as markers of CNS border macrophages 137. However, 

those genes showed also high expression in Mo/MΦ, suggesting that Apoe and Ms4a7 are not 

exclusive for BAMs in the TME. On the contrary, Mrc1 expression was restricted to BAMs. 

Additionally, Pf4, Dab2 and F13a1 were also highly and specifically expressed by BAMs 

(Figure 6.8 c, Supplementary Figure 3).  

The distribution of cells derived from naïve and tumor-bearing brains across clusters 

revealed that the MG clusters group by condition. The MG clusters enriched in cells derived 

from the naïve brains were assigned as homeostatic microglia (Hom-MG), and clusters 

consisting mostly of cells from the tumor-bearing brain as glioma-activated microglia 

(Act-MG). Mo/MФ cells were derived mainly from the tumor-bearing brain, as they rarely 

occur in the brain under homeostatic conditions. Whereas BAMs did not show any 

condition-depended grouping, although cells from both conditions were represented (Figure 

6.8 d, Supplementary Figure 4). This result demonstrates that TME induces substantial 

changes in the transcriptional profile of microglial cells, which is not observed for BAMs.  

Therefore, the influence of TME on microglia and monocyte /macrophage “signatures” 

was examined. Genes demarcating a given population were selected to generate MG and 

Mo/MФ scores, defined as an average of the expression levels of the selected genes (Figure 

6.8 d). Comparison of the MG score across conditions indicated a shift toward lower microglial 

“signature” in tumor-derived compared with control-derived cells. Still, the MG score for 

microglia from the tumor-bearing brains was high and distinguishable from Mo/MФ. Similarly, 

the Mo/MФ score was high and distinctive for the Mo/MФ group, as compared with the MG 

group. Thus, demonstrating that the signature genes of microglia and monocyte/macrophages 

are retained even under the strong influence of the glioma environment.  
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6.9. TMEM119 AND GAL-3 SEPARATE MICROGLIA AND MONOCYTE/MACROPHAGES 

WITHIN THE TME AND SHOW THE DISTINCT LOCALIZATION 

A major aim of this project was to identify cell markers for the separation of microglia and 

monocytes/macrophages within the glioma microenvironment. From the top differentially 

expressed genes in the MG and Mo/MФ groups, candidate genes of enriched expression in the 

majority of cells within the target group were selected – Tmem119 (MG) and Lgals3 (Mo/MФ) 

(Figure 6.9 a,b). Tmem119 was already proposed for the microglia marker by Bennet et al.   

(2017) 61, who confirmed its utility in CNS inflammation and nerve injury. Lgals3 encodes 

Figure 6.9 | Validation of Tmem119 and Gal-3 as cell markers separating microglia and 

monocyte/macrophages population within the TME. (a) Feature plots demonstrating expression level of 

genes highly expressed in MG and (b) Mo/MФ. (c) Flow cytometric analysis showing separation of the 

CD11b+ cells with Tmem119 and Gal-3, and projection of the CD11b+ and Tmem119+ cells onto CD45/Cd11b 

graphs. (d) Dot plots showing quantification of the Tmem119+ cell fraction within the CD11b+CD45lo gate, 

and Gal-3+ cells fraction within the CD11b+CD45hi gate (n=8, 4 males and 4 females, two-sided Wilcoxon 

Rank Sum Test, mean ± SD, ***<0.001, Tmem119 Pv=0.0002, Gal-3 Pv=0.0002). (e) Immunohistochemical 

staining for microglia (Tmem119+, Gal-3-) and Mo/MΦ ( Tmem119-, Gal-3+) shows the localization of 

specific immune cells within the tumor and its surroundings in female animal (for male see Supplementary 

Figure 5); a dashed line marks the tumor edge; scale - 100 μm; the staining was performed for 3 animals, 4 

sections each, a representative image is shown. 
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Gal-3, a lectin involved in tumor immunosuppression 142. Gal-3 is produced and secreted by 

macrophages, regulates IL-4 induced alternative macrophage activation 143, and acts as a 

monocyte/macrophage chemoattractant. 

The protein level of Tmem119 and Gal-3 was assessed in CD11b+ cells from 

the tumor-bearing hemispheres by flow cytometry at day 14 post-implantation (Figure 6.9 c). 

Brains were mechanically processed and dissociated enzymatically with DNase I to preserve a 

Tmem119 surface marker (see Methods). Gal-3 and Tmem119 allowed for the discrimination of 

two populations: Tmem119+Gal-3- (75.2% of cells) and Tmem119-Gal-3+ (15.0% of cells), whereas 

the Tmem119+Gal-3+ population was sparse (Figure 6.9 c). Therefore, validating the reliable 

separation of microglia and monocytes/macrophages with the proposed markers at the protein level.   

CD45 was a previously applied marker for the microglia (CD45lo) and 

monocyte/macrophage separation (CD45hi). However, its utility has been criticized due to 

CD45 upregulation by microglia cells under pathological conditions 55. Thus, the protein level 

of Tmem119 and Gal-3 was determined also for the CD11b+CD45lo and CD11b+CD45hi cells 

in order to compare these marker candidates with the markers that were used previously. 

Interestingly, the two methods produced similar separation, as 89.5% of CD11b+CD45lo cells 

were Tmem119+ and 83.4% of CD11b+CD45hi cells were Gal-3+ (Figure 6.9 c,d). 

Additionally, using the defined pair of microglia (Tmem119+) and monocytes/macrophages 

(Gal-3+) markers, spatial localization of those populations was assessed with an 

immunohistochemistry staining of tumor-bearing brain slices. Tmem119+ microglia adopted 

an ameboid morphology in the tumor proximity and localized abundantly in the peritumoral 

space and at the tumor edge. Whereas Gal-3+ monocytes/macrophages were localized 

predominantly within the tumor mass (Figure 6.9 e, Supplementary Figure 5). This finding 

confirms that microglia localize mostly in the tumor periphery and monocytes/macrophages 

occupy the tumor core, which was previously reported 56,75. 

6.10.  MONOCYTE-TO-MACROPHAGE POPULATIONS 

The Mo/MΦ population in glioma TME showed substantial heterogeneity that is likely 

related to the differentiation state, as the top upregulated Mo/MΦ genes encompassed genes 

typically elevated in monocytes and differentiated macrophages. The high Ly6c2 expression 

was found in a large fraction of Mo/MΦ, which could be further divided into Ly6c2highCcr2high 

monocytes (Mo) and Ly6c2highTgfbihigh monocyte/macrophage intermediate cells (Int)  

(Figure 6.10 a,b). The remaining cells resembled differentiated tissue macrophages (MΦ), 
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because they lacked the markers of the cytotoxic monocytes (Ly6c2, Ccr2) and were 

demarcated by CD49d expression, a recently proposed marker of BM-derived GAMs 

(Figure 6.10 a,b). Thus, three differentiation stages – Mo, Int and MФ were discriminated 

within the Mo/MΦ population (Figure 6.10 c).  

Notably, the MΦ population expressed Ccl22 and Ccl5 genes, encoding chemokines 

important for T-cell recruitment 46,47 and Cd274, a gene encoding an immune checkpoint protein 

PD-L1 (Figure 6.10 a,b). Such expression pattern suggests a putative role of these cells 

in mediating the immunosuppressive response.  

The level of PD-L1 protein was examined with flow cytometry. The PD-L1 expression was 

restricted to the CD11b+CD45high population (Figure 6.10 d), thus implying that it is produced 

by monocytes/macrophages but not microglia (see Figure 6.9 c,d). Additionally, PD-L1 

Figure 6.10 | Examination of the monocyte and macrophage populations.  (a) Feature plots depicting the 

distribution of the expression of genes discriminating Monocytes (Mo), Monocyte-Macrophage intermediate (Int), 

and Macrophage (MΦ) subpopulations. (b) Density plots demonstrating the expression level of markers 

discriminating the Mo/MΦ subpopulations (Mo, Int, MΦ). (c)  UMAP plot shows clusters of Mo/MΦ 

subpopulations. (d)  Flow cytometric analysis of PD-L1 protein within the CD11b+ cells and their projection onto 

CD11b/CD45 graphs, dot plots demonstrate percentages of CD49d+ and PD-L1+ cells within CD45hi and CD45lo 

groups (n=4, 2 males and 2 females; two-sided Wilcoxon Rank Sum Test, mean ± SD, *<0.05). (e) Flow 

cytometric analysis of the distribution of the markers discriminating Mo/MΦ subpopulations within 

CD11b+CD45hi cells, dot plots demonstrate percentage of CD11b+CD45hi cells that belong to the defined 

populations (n=4, 2 males and 2 females; two-sided Wilcoxon Rank Sum Test, mean ± SD *<0.05. 
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expression was not found in the Ly6C+ monocytes (Figure 6.10 e), demonstrating that it is 

rather produced by the differentiated macrophages.  

6.11. ASSESSMENT OF THE PREVIOUSLY PROPOSED MARKERS OF GLIOMA 

INFILTRATING MONOCYTES/MACROPHAGES 

In recent years several reports proposing markers for monocytes/macrophages separation 

within the brain TME appeared in the field. Thus, we verified the expression of the proposed 

markers at the single-cell level. Haage et al. 2019 suggested Hp, Emilin2, and Sell based on the 

meta-analysis of bulk RNA-seq data sets and validated the gene candidates at RNA and protein 

level. The scRNA-seq analysis presented here, showed that the expression of Hp and Sell is 

limited to the Mo cell fraction, whereas Emilin2 is expressed in Mo and Int groups, but the 

fraction of expressing cells in those groups is low (Figure 6.11 a). We recently proposed Tgm2 

and Gpnmb as universal gene markers of GAMs, based on a critical assessment of bulk RNA 

expression profiles across glioma animal models (mouse, rat) and human patient-derived 

samples. At the level of single-cell, the expression Tgm2 and Gpnmb also appeared to be 

restricted to a fraction of cells, which were found mostly within the Int group (Figure 6.11 b). 

Figure 6.11 | Assessment of previously proposed monocyte/macrophages and GAM markers in the 

glioma TME. Feature plots demonstrating RNA expression level of marker candidates proposed by (a) Haage 

et al. (2019), (b) Walentynowicz et al (2018) and (c) Bowman et al (2016). (d) Assessment of CD49d 

expression in CD11b+CD45lo and CD11b+CD45hi populations (n=4, 2 males and 2 females two-sided 

Wilcoxon Rank Sum Test, mean ± SD, *<0.05, Pv=0.0286). (e) Assessment of Ly6C (monocytes) expression 

within the  CD11b+CD45hi  and CD49d+ populations (n=4, 2 males and 2 females; two-sided Wilcoxon Rank 

Sum Test, mean ± SD *<0.05, Pv=0.0286).  
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Those results demonstrate how bulk RNA-seq can be biased by genes that although expressed 

at the high level, are found only in a subset of cells.  

On the other hand, the RNA level not necessarily corresponds to the protein level. Bowman 

et al. (2016) showed that Itga4 encoding CD49d is specifically repressed by microglia, while 

being expressed on the surface of BM-derived infiltrating monocytes and macrophages 59,60. 

Here, it was found that Itga4 is expressed by the subset of Mo/MФ population, especially by 

the MФ (Figure 6.11 c). However, flow cytometric analysis indicated that the CD49d protein 

is more abundant than the transcript of the gene encoding for this protein. The CD49d+ cells 

constituted 72.1% of the CD11b+CD45hi population, whereas they were not found in the 

CD11b+CD45lo population (Figure 6.11 d). To determine whether the CD49d protein is 

expressed mainly by the fraction of differentiated macrophages, the CD11b+CD45hi cells were 

assessed for protein expression of Ly6C (demarcating monocytes) and CD49d (Figure 6.11 e). 

The CD49d+ cells were found to consist of both monocytes (Ly6C+, 66.2%) and differentiated 

macrophages (Ly6C-, 24.5%. Therefore, these findings demonstrate that the RNA and protein 

expression pattern of Itga4 (CD49d) are not concordant and that CD49d might indeed expressed 

on the surface of both monocytes and differentiated macrophages.  

6.12. TRANSCRIPTIONAL NETWORKS EXPRESSED BY GAMS ARE MORE PRONOUNCED 

IN THE INFILTRATING MONOCYTES/MACROPHAGES  

Microglia and monocytes/macrophages showed distinct transcriptional signatures 

informing about their cell type. Still, a distinct cell type does not necessarily imply a distinct 

function. Thus, the transcriptional networks activated by MG and Mo/MΦ in TME were 

examined to elucidate their roles in supporting the growth of glioma. 

First, differential expression (DE) analysis was performed for Act-MG compared to 

Hom-MG to extract genes that are induced by the tumor in microglial cells. Next, the DE 

analysis was performed for Mo/MФ compared to Act-MG, the sets of obtained genes were 

compared between groups and analyzed functionally with the Gene Ontology analysis (GO) 

(Figure 6.12 a). Act-MG showed significant induction of 156 genes in the glioma TME. 

Importantly, the majority of those genes (93) were expressed by Mo/MФ at a significantly 

higher level than in Act-MG (Figure 6.12 b). Whereas Mo/MФ showed a substantial number 

of elevated (481) genes that were not found to be upregulated in Act-MG.  The commonly 

induced genes included genes of the interferon pathway: Stat1 (Signal Transducer and Activator 
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Figure 6.12 | Functional analysis of transcriptional networks expressed by microglia and 

monocytes/macrophages in glioma microenvironment. (a) Scheme of the analytical approach. (b) Scatter 

plot depicting expression level of differentially upregulated genes in Act-MG and Mo/MΦ. (c) Heatmap 

showing the comparison of expression of top 25 upregulated genes in Hom-MG vs Act-MG and Act-MG vs 

Mo/MΦ. Gene Ontology analysis of biological processes for genes upregulated in (d) Act-MG compared to 

Hom-MG and (e) Mo/MΦ compared to the Act-MG. (f, g) Expression level of selected genes expressed 

specifically in distinct subpopulations 
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of Transcription 1), Ifitm3 (Interferon Inducible Transmembrane Protein 3), Irf7 (interferon 

regulatory factor 7); and genes encoding major histocompatibility complex (MHC) II 

components: H2-Aa, H2-Ab1, H2-D1, H2-K1. Act-MG showed specific upregulation of 

cytokine encoding genes: Ccl2, Ccl3, Ccl4, Ccl12, which are involved in the recruitment of 

e.g. monocytes, T-cells, and NK cells 138. Accordingly, Ccr2 – a gene encoding a receptor for 

Ccl2 cytokine, was specifically expressed in the Mo/MФ group, pointing to the capability of 

microglia to attract monocytes to the site of tumorigenesis (Figure 6.12 b, c).  

Next, the GO analysis of biological processes was performed on the two sets of genes – 

genes significantly upregulated in Act-MG compared to Hom-MG (Figure 6.12 d) and genes 

significantly upregulated in Mo/MΦ compared to the Act-MG (Figure 6.12 e). The analysis 

indicated enrichment of terms directly related to the immune function and largely shared 

between Act-MG and Mo/MФ, consisting of “response to bacterium” and “response to 

interferon-gamma”. However, those terms encompassed a broader number of genes for 

Mo/MФ. In addition, the Mo/MФ population showed enrichment of other interferon-related 

terms, connected with the response to interferon-beta (“response to interferon-beta”, “cellular 

response to interferon-beta”. Whereas, the “antigen processing and presentation” term was 

found only for Act-MG, although many of the genes represented in this term, were also found 

to be significantly upregulated in Mo/MФ – H2-Aa, H2-Ab1, H2-Eb1, H2-Q7, H2-Q9. Other 

determined terms included “cytoplasmic translation” in Act-MG and “purine monophosphate 

metabolic process” in Mo/MФ. 

Several shared genes (Cd52, Stat1, Isg15, and Usp18) were expressed at a higher level in 

Mo/MΦ compared to their levels in Act-MG (Figure 6.12 f). Proteins encoded by those genes 

are involved in immune responses: CD52 mediates co-stimulatory signals for T-cell activation 

and proliferation 139; Stat1 is a mediator of interferon signaling; Isg15 stabilizes Stat1 

preventing premature termination of an inflammatory response 140; Usp18 negatively regulates 

Stat1 expression and termination of interferon-induced genes 141. Such expression patterns may 

indicate that both microglia and monocytes/macrophages initiate some elements of the immune 

response, with more prominent activation in monocytes/macrophages. Among genes that were 

highly expressed in Mo/MΦ, we found Il1b coding for an inflammatory cytokine IL-1β along 

with Il1rn and Il18b coding for the inhibitors of pro-inflammatory cytokines (Figure 6.12 g). 

These data, together with the high expression of Cd274 coding for PD-L1 in Mo/MΦ, suggest 

stronger activation of immunosuppressive pathways in monocytes/macrophages 

(Figure 6.12 g). 
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6.13. VERIFICATION OF THE MYELOID CELL POPULATIONS IN THE GLIOMA 

MICROENVIRONMENT WITH CITE-SEQ 

 The CITE-seq was performed for CD11b+ cells sorted from naïve brains (D0) and 

tumor-bearing hemispheres at 14 (D14) and 21 (D21) days post-implantation of the GL261 

cells. Similarly to the scRNA-seq experiment, the procedure included both male and female 

animals (Figure 6.13 a). Clustering was performed based on RNA expression profiles for 

combined conditions and the resulting clusters were examined using the protein level and 

cluster top expressed genes. The cell identity was assigned according to the literature-based 

immune marker panel (Supplementary Table 1) (Figure 6.13 b,c).  

In agreement with the scRNA-seq analysis, the major identified cell populations were 

microglia and monocytes/macrophages. Microglia clusters (MG) expressed the canonical 

microglia genes (Tmem119, P2ry13, Cx3cr1) and were distinguished by an elevated level of 

the Tmem119 protein (Figure 6.13 b,d). MG could be divided into homeostatic (Hom-MG) 

and tumor-activated microglia (Act-MG), as indicated by increased expression of the genes 

previously found to be induced by microglia in the TME in the Act-MG clusters (Ccl12, H2-Aa, 

H2-Ab1, H2-Eb1) (Figure 6.13 b). 

Monocytes/macrophages (Mo/MФ) showed high expression of genes observed in this 

group in the scRNA-seq analysis (Lglas3, Tgfbi, Ly6c2, Ifitm2, S100a6, S100a11) 

(Figure 6.13 b). Interestingly, at the protein level, the Mo/MФ clusters showed the uniform 

expression of the CD49d and CD45 protein, whereas the encoding genes Itga4 and Ptprc were 

expressed only by a fraction of the Mo/MФ (Figure 6.13 e). Thus, demonstrating that the RNA 

level does not necessarily correspond to the protein level.  

In agreement with the scRNA-seq, Mo/MФ could be further divided into monocytes 

(Mo; Ly6c2hi, Ccr2hi), monocytes-to-macrophages intermediate (Int; Ly6c2hi, Ccr2mid, Tgfbihi, 

Ifitm2hi) and differentiated macrophages (MФ _1, MФ_2; Tgfbihi) (Figure 6.13 c,e,f). The level 

of Ly6C protein across Mo/MФ clusters was consistent with the Mo, Int and MФ clusters 

discrimination, as Ly6C was highly elevated in Mo, along with the monocyte gene markers 

(Ly6c2, Ccr2, Vcan), and decreased toward the clusters of the differentiated macrophages MФ 

_1, MФ_2 (Figure 6.13 f). 

  The CITE-seq analysis indicated also the presence of non-classical Monocytes (Spn+, 

Ace+ Ear2+; nc-Mo) (Figure 6.13 g), which were also found in a recent scRNA-seq study 

employing the same murine glioma model and human GBM samples 77. Interestingly, two 
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clusters that along with the Mo, Int, and MФ were demarcated by high CD49d and CD45 protein    

expression, were demarcated by Ccr7 expression and the highest level of the MHCII protein 

(Figure 6.13 h). The CCR7 cytokine receptor is expressed by dendritic cells (DCs) and is 

involved in one of the most important chemokine systems orchestrating DCs migration from 

affected tissue to the lymph nodes 144,145. DCs are professional antigen presentation cells, 

capable of expressing a high level of MHCII. Additionally, some CD11b+ conventional DCs 

Figure 6.13 | Cell type identification in the CITE-seq data.  (a) Schematic representation of the CITE-seq 

experiment. (b) Heatmap demonstrating the expression level of the genes from the immune marker panel 

(Supplementary Table 1) in all the defined cell clusters. (c)  UMAP demonstrating clusters obtained in a result of 

graph-based clustering and cell type identification. (d-h) Distribution of the expression level of genes and proteins 

highly expressed in MG (d), MФ (e), Mo (f), nc-Mo (g) and DCs (h) cluster.      
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(cDCs) populations are found to differentiate from monocytes 146. Thus, those clusters assigned 

as Mo-DCs and cDCs were explored in further analysis (see paragraph 6.18). 

The other cell populations identified in the CITE-seq data set were NK cells (Ncr1+, 

Klrb1c+), T cells (CD3d+) and BAMs (Pf4+, Mrc1+, Mgl2+). In contrast to the previous analysis, 

the identified BAM population was very minor. Additionally, two small clusters showed 

expression of a single cell type marker: CD24a+ that is expressed by dendritic cells and 

granulocytes, and Ncam1+ which is a marker of NK cells (Figure 6.13 c). 

6.14. THE PROPORTION OF MAJOR GAM POPULATIONS IN DIFFERENT GLIOMA STAGES 

The contribution of the major identified cell populations: Hom-MG, Act-MG, Mo, Int, MФ, 

and DCs (DCs + Mo-DCs) was examined within the healthy brain and two murine glioma 

stages. CD11b+ cells derived from naïve brains (D0) consisted mainly of Hom-MG (98.1%) 

(Figure 6.14 a,b). Whereas, a sparse number of cells was identified as Act-MG (1.4%), 

indicating an activated state of a small fraction of cells in the normal brain. It is consistent with 

the fact that microglia continuously survey the brain, reacting to and removing abnormalities to 

maintain homeostatic conditions. At D14, the number of Hom-MG decreased to 15.1%, 

whereas   Act-MG constituted 35%, and the infiltrating cell populations encompassed 49.9 % 

of CD11b+ cells in glioma TME (Figure 6.14 b). At D21, the CD11b+ cells infiltrating from 

the periphery outnumbered microglia and constituted 68% of the myeloid population.  

Figure 6.14 | Distribution of cells  from each time point across defined populations. (a) UMAP plot showing 

distribution of cells from D0, D14 and D14 in all CD11b+ cells. (b) Stacked bat plot showing proportion of major 

identified cell population across all time points. 
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Importantly, out of the infiltrating populations, the MФ was most abundant at D14 (20.9%) 

and its number increased at D21 (33.4%), whereas the proportion of Mo (D14= 9.2%, 

D21=10.8%) and Int (D14= 15.1%, D21=17.6%) appeared to be similar. DCs also constituted 

similar fraction of  CD11b+ cells both at D14 (4.7%) and D21 (6%) (Figure 6.14 b). Thus, 

pointing to a constant inflow of monocytes and accumulation of the differentiated macrophages 

that outnumber activated microglia in the glioma TME. 

6.15. SEPARATION OF THE MAJOR GAM POPULATIONS BY CITE-SEQ PROTEIN MARKERS 

Since the MG clusters were demarcated by Tmem119 protein expression, and Mo/MФ by 

CD49d and CD45 protein expression, the ability to separate microglia and 

monocytes/macrophages with those surface proteins was verified. To mimic flow cytometric 

analysis, the protein level of Tmem119/CD45 and Tmem119/CD49d was visualized with 

scatter plots (Figure 6.15). The Tmem119 was indeed highly expressed by MG, although the 

fraction of cells from the Act-MG clusters showed lower Tmem119 level that overlapped with 

the level expressed by the Mo/MФ and DCs clusters. Still, MG could be separated from the 

Mo/MФ and DCs while combining Tmem119 with CD45 or CD49d level. Gates set on the 

Figure 6.15 | Flow cytometric analysis mimicked with protein expression level from the CITE-seq analysis. 

Separation of the major identified cell populations with Tmem119/CD45 (left) and Tmem119/CD59d (right). 

Density plots presented on the top and very right demonstrate distribution of single protein level. Bar plots on the 

bottom show fraction of cell population within the defined gates. The values inside/above the bars show the 

percentage of cell from a given population (Hom-MG, Act-MG, DCs, Mo/MФ) within a given gate.  
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Tmem119 vs CD45 scatter plot resulted in 99.6 % of Hom-MG and 96.0 % of Act-MG cells in 

the Tmem119hiCD45lo gate, and 99.7 % of Mo/MФ and 98.3 % of DCs in the 

Tmem119loCD45hi gate. Similar separation was obtained with the Tmem119 and CD49d  

(Figure 6.15). 

Therefore, the validity of Tmem119, CD45d, and CD45 surface proteins as markers for 

the separation of the major populations within the myeloid cells infiltrating glioma was 

confirmed. Still, the CD49d hi /CD45hi population is very heterogeneous, as it encompasses 

monocytes, monocytes-to-macrophages intermediate and differentiated macrophages, as well 

as dendritic cells of myeloid origin.   

6.16. FUNCTIONAL STATES OF HOMEOSTATIC AND TUMOR-ACTIVATED MICROGLIA 

In order to perform a more in-depth characterization of the transcriptional profiles informing 

about the cell functional states, the top expressed genes of the clusters were explored 

(summarized in Supplementary Figure 6) in search of functional pathways. Additionally, 

transcriptional expression patterns identified in a recent scRNA-seq study employing the same 

murine glioma model77 were examined (interferon-related, hypoxic, phagocytosis/lipid 

metabolism).  

Microglial clusters were composed of 3 Hom-MG and 4 Act-MG clusters (Figure 6.16 a). 

Changes in the transcriptional patterns across all the microglial clusters were assessed by 

identification of highly expressed genes belonging to the same functional group or involved in 

the same biological process, that were subsequently used to calculate a score  

(average expression of all genes).  

A total of six functional gene groups were defined for the microglial population which is 

summarized in Figure 6.16 b, and the expression level of each gene used for the calculation of 

the scores is demonstrated in Supplementary Figure 7. Homoeostatic microglia appeared to 

exhibit two major transcriptional programs. First program, was characterized by high 

enrichment of “canonical microglia” genes: Gpr34, Fcrls, P2ry12, Cx3cr1, Selplg, Olfml3, 

Tmem119; and was expressed at the highest level by Hom-MG_1 (Figure 6.16 a-c). Second 

program, showed elevated expression of genes encoding transcription factors and co-activators: 

Klf2, Klf4,  Egr1, Cited2, Fos, Fosb, Atf3, Ier2, Jun, Junb. The “transcription factor-related” 

transcriptional program was enriched predominantly in Hom-MG_3. Interestingly, the cluster 

Hom_MG-2 did not show specific gene expression, but had mixed expression of the “canonical 

microglia” and “transcription factor-related” program  (Figure 6.16 a-c), demonstrating 

phenotypic spectrum rather than a strict functional specialization.  
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Figure 6.16 | Transcriptional programs of homeostatic and tumor-activated microglia. (a) UMAP 

demonstrating the microglia clusters. (b) Schematic representation of the transcriptional programs identified in 

Hom-MG and Act-MG populations. Illustration prepared with BioRender.com (c) Density plot demonstrating 

distribution of the expression level of scores used to describe each of the transcriptional programs. Scores were 

computed by calculating an average expression of genes included in the score. The expression levels of 

individual genes used for the score calculation are given in Supplementary Table 7. (d) Expression level of genes 

form the “tumor-induced activation” program, that were upregulated specifically by microglial cells from glioma 

TME. (e) Expression level of proteins from the CITE-seq protein panel, which encoding genes were found tin 

the “tumor-induced activation” transcriptional program. (f) Scatter plot demonstrating separation of the MG 

subpopulations by MHCII and PD-L1 protein level. 
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The Act-MG clusters showed uniform upregulation of genes indicating the tumor-induced 

activation (“activation-related”) compared to Hom-MG clusters (Figure 6.16 c). The 

tumor-induced activation was evidenced by elevated expression of genes encoding MHC II: 

H2-Aa,  H2-Ab1, H2-Eb1 and factors playing a critical role in antigen presentation: Cd74, an 

invariant MHC II chain and chaperone involved in the complex assembly and transport 147, and 

B2m  - beta-2 microglobulin, which is a component of the MHC class I complex. The 

tumor-induced genes included also elements of the interferon (IFN) pathway: a transcription 

factor involved in IFN-dependent signaling - Stat1, interferon induced transmembrane protein 

- Ifitm3, and the interferon inducible protein - Bst2; and other genes implicated in 

immune related functions: Cd52, which was found to block the production of inflammatory 

cytokines via inhibition of the toll-like receptor (TLR) and tumor necrosis factor (TNF) 

signaling 139,  Lgals3bp implicated in cell-cell interaction and binding to Gal-3 that is highly 

expressed by infiltrating monocytes/macrophages, Ccl12 encoding a cytokine attracting 

eosinophils, monocytes, and lymphocytes and C4b gene encoding a complement component 

4b, being a part of the innate immune response. 

Act-MG also exhibited specialized transcriptional programs. Act-MG_1 and a fraction of 

cells belonging to Act-MG_3 and Act-MG_4 clusters showed elevated expression of the 

“Cytokine-related” score encompassing: Ccl2, Ccl3 and Ccl4 genes encoding cytokines 

involved in the recruitment of monocytes and a variety of other immune cell types including 

NK, DCs, and T cells; Il1a and Il1b encoding proinflammatory interleukins, and tumor necrosis 

factor Tnf encoding a multifunctional cytokine involved in differentiation, proliferation and cell 

survival 148. 

Act-MG_3 enriched genes related with “lipid metabolism and phagocytosis”: Lgals3, 

Fabp5, Gpnmb, and Spp1. Lipid-associated macrophages that perform lipid uptake in adipose 

tissue were found to express a transcriptional signature Lgals1, Lgals3, Fabp4, Fabp5, Lipa, 

Lpl, Trem2 149. Whereas, the Spp1+Gpnmb+ microglia cells that express a high level of 

lysosomal proteins were found in early postnatal brains in the axon tracts of corpus callosum 

indicating their increased phagocytotic activity 150,151. The defined “lipid-metabolism and 

phagocytosis-related” signature points to the role of those microglia in clearing lipid-rich 

molecules and debris.  

Act-MG_4 showed specific over-expression of “proliferation-related” genes: Stmn1 

associated with microtubule disassembly; Top2a, Hmg2b and Pclaf involved in DNA 

organization during transcription and replication, Birc5 blocking apoptotic cell death and 
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promoting proliferation 152, Ube2c ubiquitinase required for the decomposition of mitotic 

cyclins and cell cycle progression 153, Ccnb1, Ccnb2, Ccna2, Cks1b, Cdk1 encoding cyclins and 

cyclin associated proteins and Tubb, Tubb4b, Tuba1b coding for microtubule structural 

components. 

The genes belonging to the “activation-related” transcriptional program were examined in 

search of the genes specifically induced by microglia and not expressed by 

monocytes/macrophages. Ccl12 and C4b were found to be expressed at an increased level in 

Act-MG compared with Hom-MG, and those genes were not found to be expressed in any of 

the Mo/MФ clusters (Figure 6.16 d). Additionally, the protein panel assessed in the CITE-seq 

analysis consisted of CD52 and MHCII that are encoded by the genes found in the “activation-

related” transcriptional program (Cd52 and H2-Aa,  H2-Ab1, H2-Eb1). The protein expression 

was consistent with the gene expression pattern, as levels of both CD52 and MHCII were higher 

in Act-MG compared with Hom-MG (Figure 6.16 e). However, level of CD52 and MHCII was 

lower in Act-MG than in the Mo/MФ subpopulations.  

Therefore, comparing the identified transcriptional programs to the signatures reported by 

Antunes et al. 2021, the “interferon-related” signature was found as a part of the “activation-

related” program, whereas the “lipid metabolism and phagocytosis-related” signature was 

recapitulated. A presence of the hypoxic signature was not confirmed, as the hypoxic genes 

were not co-expressed by the same cells but rather distributed over different clusters 

(Supplementary Figure 8).  

Hom-MG and Act-MG were found to express distinct transcriptional programs, thus it was 

examined whether the MG subpopulations can be also distinguished by the protein level, using 

the CITE-seq protein panel. The MHCII and PD-L1 level best distinguished Hom-MG and 

Act-MG, and separated some of the Act-MG populations (Figure 6.16 f, Supplementary 

Figure 9). A vast majority of the Hom-MG populations were MHCIIlo/PD-L1lo. Whereas Act-

MG could be divided into MHCIIhi/PD-L1lo enriched in cells from Act-MG_1 and Act-MG_2 

clusters, and MHCIIhi/PD-L1hi that consisted mainly cells from Act-MG_3 and Act-MG_4 

clusters. Therefore, demonstrating that the tumor-induced activation of microglia is associated 

with the elevated level of MHCII protein and that certain subpopulations of microglia cells are 

capable of inducing expression of an immune checkpoint protein PD-L1 that exerts 

immunosuppressive properties.   
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6.17. FUNCTIONAL STATES OF MACROPHAGES IN GLIOMA TME 

As described in section 6.13, cells identified as monocytes/macrophages could be divided 

into clusters expressing genes of non-classical monocytes (nc-Mo) 77, showing a high level of 

monocytic gene markers (Mo), demonstrating mixed expression of monocyte and macrophage 

genes (Int), and two clusters demarcated by expression of genes previously reported for 

macrophages (MФ_1 and MФ_2) 38,77 (Figure 6.17 a). Consistently, Mo showed the highest 

level of Ly6C protein, which was decreased in Int and MФ_2 and showed the lowest level in 

MФ_1. Whereas, out of the proteins from the CITE-seq protein, the level of PD-L1 protein 

across the monocyte/macrophage clusters demonstrated an opposite pattern (Supplementary 

Figure 9).  

PD-L1 (Programmed death-ligand 1) is one of the best known immune-checkpoint proteins, 

involved in the suppression of T cell activation and expansion. Evaluation of the Ly6C and 

PD-L1 levels across monocyte/macrophage clusters demonstrated a gradual decrease of the 

Ly6C and an increase of the PD-L1 level across the differentiation stages of the Mo-Int-MФ 

subpopulations (Figure 6.17 b). The Ly6Chi cells showed a low level of PD-L1 and those cells 

encompassed the vast majority of Mo and a high fraction of Int. Whereas, the cells expressing 

a high level of PD-L1 are Ly6Clo, and encompass most cells from Int, MФ_1, and MФ_2 

clusters. These observations point to the fact that monocytes are not capable of 

immunosuppression via PD-L1, but this property might be adapted during differentiation within 

the glioma TME.  

To assess the transcriptomic profile of the two identified clusters of differentiated 

macrophages - MФ_1 and MФ_2, a differential expression (DE) analysis was performed. Each 

investigated cluster was compared to all other clusters in the Mo/MФ and DCs group 

(Figure 6.17 c). The MФ_1 was found to upregulate Trem2 and Apoe. Trem2 is a triggering 

receptor expressed on myeloid cells, and the exact identities of its ligands remain unknown 154. 

However, lipids and lipoprotein complexes were shown to activate Trem2, and Apolipoprotein 

E (ApoE) is one of the best known Trem2 ligands 155,156. Trem2 has been recognized as a factor 

essential for initiation of the phenotype associated with phagocytosis and lipid metabolism in 

the disease-associated microglia in Alzheimer disease 157. Additionally, agglomerating 

evidence points to the tumor-supporting function of Trem2, as the macrophage Trem2 level 

positively correlated with tumor progression 158,159, and Trem2+ myeloid cells were shown to 

efficiently inhibit T cell proliferation in vitro 160. The top genes differentially upregulated by 

MФ_1 included also genes of the complement system (C1qa, C1qb, C1qc). The complement 
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system is a part of innate immunity, directed against pathogenic intruders and “non-self” cells 

that is involved in both eliciting inflammatory responses and preventing autoimmunity. 

The C1q-polarized macrophages and DCs were shown to enhance the production of 

anti-inflammatory interleukins IL-27 and IL-10, as well as upregulate the immune checkpoint 

proteins PD-L1 and PD-L2 and suppress induction of Th1 and Th17 proliferation 161,162. 

Figure 6.17 | Characterization of monocyte/macrophage subpopulations in glioma TME. (a) UMAP 

demonstrating the monocytes/macrophages clusters. Clusters described in section 6.17 (Mo-DCs, DCs) are greyed 

out. (b) Scatter plot demonstrating gradual changes in Ly6C and PD-L1 protein level across 

monocytes/macrophages in glioma TME. (c) “Half-volcano” plots depicting differentially upregulated genes in 

MФ_1 and MФ_2 clusters in comparison with all other clusters in monocytes/macrophages and DCs groups. Blue 

dots represent significantly upregulated genes (avg log2FC>0.5, padj<0.05), and grey dots genes that did not pass the 

significance threshold.  (d) Violin plots demonstrating expression level of selected differentially expressed genes in 

MФ_1 (left) and  MФ_2 (right) in comparison to other identified cell populations.  
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The MФ_2 macrophages upregulated Lgals3, Fabp5, Gpnmb - genes found in the “lipid 

metabolism and phagocytosis” transcriptional program enhanced by Act-MG_3, CD9 gene 

found to be involved in immunosuppression, and genes encoding lysosomal hydrolases: Ctss, 

Ctsb, Ctsd (Figure 6.17 c).  

Next, the expression level of the identified differentially expressed genes from two 

functional groups: “immunosuppression and support of tumor growth” - Trem2, Apoe, C1qa, 

C1qb; “lipid metabolism and phagocytosis” - Lgals3, Fabp5, Gpnmb, Cstb; was assessed across 

all cell clusters (Figure 6.17 c). Trem2, Apoe were upregulated by both MФ_1 and MФ_2, 

whereas C1qa and C1qb was elevated only by MФ_1 out of the infiltrating 

monocytes/macrophage population. Interestingly Trem2 and C1qa were also highly 

upregulated by Hom-MG and Act-MG, pointing to their function under homeostatic conditions. 

In contrast, the “lipid metabolism and phagocytosis-related” signature was most pronounced in 

the MФ_2, although the Lglas3 expression was observed in all clusters of 

monocytes/macrophages group as well as in Mo-DCs (Figure 6.17 c). 

Therefore, both clusters of the differentiated macrophages were found to express 

transcriptional patterns indicative of immunosuppressive properties. Whereas MФ_2 showed 

also upregulation of the “lipid-metabolism and phagocytosis” genes, found also for Act-MG-3 

cluster, although at lower level.  

6.18. MONOCYTE-DERIVED DENDRITIC CELLS AMONG CD11B
+ 

CELLS IN GLIOMA TME 

The CITE-seq analysis was performed on FACS sorted of CD11b+ cells.  CD11b is 

expressed on several subsets of dendritic cells 146. As mentioned in section 6.13, among cell 

clusters of infiltrating monocytes/macrophages (demarcated by a high level of the CD49d 

protein), clusters showing high level of Ccr7 gene expression and MHCII protein were 

identified. Such expression pattern pointed to the possibility that the two clusters should be 

assigned as DCs (Figure 6.18 a).  

Indeed, the two clusters showed distinctive expression of Btla, Kit, and Dpp4 

(Figure 6.18 b) genes that are found to be expressed across subsets of classical DCs (cDC) 146. 

One of the clusters was demarcated by an increased expression of Fcgr1, Itgax, and Ly6C 

protein that were found to reliably distinguish monocyte-derived DCs from conventional 

CD11b+ DCs (Figure 6.18c) 163,164.  Whereas, the other cluster was demarcated by an increased 

expression of Cd83 gene encoding a marker of mature dendritic cells, Ly75 encoding CD209 
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and Cst3 encoding Cystatin C that are found in conventional DCs including CD11b+ DCs  

(Figure 6.18d). Thus, those clusters may represent monocyte-derived DCs - Mo-DCs (Fcgr1+, 

Ly6C+)  and CD11b+ conventional DCs – cDCs (Ly75+, Cst3+).   

To determine the functional signatures of Mo-DCs and cDCs, the DE analysis was 

performed: each investigated cluster was compared to all other clusters in the Mo/MФ and DCs 

group. The results were consistent with previous observations. Mo-DCs and cDCs showed 

Figure 6.18 | Identification of monocyte-derived dendritic cells among CD11b+ cells in glioma TME. 

(a) UMAP plot demonstrating the Mo-DCs and DCs clusters. (b-d)  Feature plots demonstrating expression level 

of genes enriched in (b) classical DCs , (c) monocyte-derived DCs  (d) mature dendritic cells. (e) in comparison 

with all other clusters in monocytes/macrophages and DCs groups. Violet dots represent significantly upregulated 

genes (avg log2FC>0.5, padj<0.05), and grey dots genes that did not pass the significance threshold. 
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increased expression of the MHCII encoding genes: H2-Eb1, H2-Aa, H2-Oa, and Cd74 

(Figure 6.18e). Whereas, the chemokine receptor gene Ccr7 was the most upregulated gene of 

the cDCs cluster. CCR7 is expressed by B-cells, subsets of T-cells, and mature DCs and is 

essential for directing DCs to the lymph nodes. The CCR7 interaction with its ligands (CCL19, 

CCL21) is one of the most important chemokine systems orchestrating DCs migration from 

affected tissue to the lymph nodes 144,145. Additionally, cDCs upregulated Irf8 (Interferon 

Regulatory Factor-8), which is essential for the development of monocytes, plasmacytoid DCs, 

and type I conventional DCs and remains at a high level in the differentiated DCs 165, and Stat4 

(Signal transducer and activator of transcription 4) that is induced in DCs during maturation 166. 

Interestingly, Mo-DCs upregulated the interferon-response genes: Ifitm1, Ifitm6, Ifi205 and 

Il4i1 that was not observed for the cDCs cluster (Figure 6.18 e). 

To verify, whether the observed high level of MHCII protein in Mo-DCs and DCs is 

sufficient to discriminate those cells from the monocyte/macrophages, the flow cytometric 

analysis was mimicked with the use of MHCII and CD11b proteins from the CITE-seq protein 

panel. The level of MHCII indeed separated DCs from Mo, Int, and MФ_1/2 clusters. However, 

the MHCII level in Mo-DCs showed overlap with the Int and MФ_1/2 clusters. CD11b was 

found to be expressed in both Mo-DCs and cDCs, although at a lower level than in 

monocyte/macrophage clusters. Therefore, the combination of CD11b and MHCII protein level 

allowed separating CD11bhiMHClo/mid clusters - Mo, Int, MФ_1 and MФ_2; from the 

CD11bloMHChi clusters -   Mo-DCs and cDCs (Figure 6.18 f). 

6.19. INTERFERON-RELATED VS TUMOR-SUPPORTIVE EXPRESSION PROFILES 

Recent scRNA-seq analysis employing the same murine glioma model reported enrichment 

of several transcriptional programs (hypoxic, phagocytosis/lipid metabolism, IFN-related) in 

microglia and macrophage cells. The hypoxic signature was not recapitulated (Supplementary 

Figure 8), whereas the “lipid metabolism and phagocytosis” transcriptional program was 

identified in MФ_2 in the DE analysis (section 6.16).  

To perform a systematic analysis of the “IFN-related” signaling, the IFN response genes 

reported for microglia and macrophages were downloaded from the INTERFEROME  

database 125 (see Methods). Out of the 467 genes, which upregulation was reported to be 

induced by interferons in monocytes, macrophages or microglia, 453 were found to be 

expressed in the CITE-seq data set. Next, the 50 top expressed IFN-response genes were used 

for hierarchical clustering of cells from MG, Mo/MФ, and DCs groups (Figure 6.19 a). 
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The hierarchical clustering organized cells from low-IFN-response to high-IFN-response 

expressing cells, in groups overlapping with the previously defined cell identities – Hom-MG, 

Act-MG, MФ, Int, DCs, Mo. Thus demonstrating that the IFN-response genes were expressed 

at the lowest level in Hom-MG and increased in Act-MG. Whereas among the clusters of 

infiltrating cells, Mo showed the highest level of the IFN-response genes and their expression 

decreased gradually through DCs and Int to MФ clusters. Next, the IFN score was calculated 

by averaging the expression level of genes encoding proteins belonging to interferon-induced 

transmembrane (IFITM), interferon response factor (IRF), and interferon-inducible (IFI) 

Figure 6.19 | Interferon-related vs tumor-supportive expression profile  (a) Heatmap demonstrating 

expression pattern of the IFN-response genes (for genes selection see Methods). The dendrograms were generated 

with the ward.D2 method and ordered by a minimum distance. (b-c) Distribution of the IFN score and PD-L1 

protein expression level on  feature plots in all analyzed CD11b+ cells (b) and density plots across the major 

identified clusters (c). (d) Filled density plots of genes from “IFN-related signaling” (upper panel) and 

“immunosuppression and support of tumor growth” gene signatures (lower panel) showing gradual changes in 

proportion of Mo/MФ cell clusters along increasing gene expression.  
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protein families (for the full gene list see Methods). The IFN score expression pattern was 

consistent with the results of hierarchical clustering of the IFN-response genes. The score was 

the highest in Mo, and decreased gradually through Int to MФ cluster (Figure 6.19 b-c). 

Similarly, a gradual decrease was noted comparing Mo-DCs and cDCs groups. In MG, the IFN 

score was elevated in Act-MG compared to Hom-MG and was most pronounced in Act-MG_3 

and Act-MG_4. Still, the IFN score in Act-MG clusters was lower compared with all clusters 

from the Mo/MФ group (Figure 6.19 c). 

Interestingly, the distribution of the PD-L1 protein expression showed a pattern opposite to 

the IFN score – PD-L1 level was the lowest in Mo and the highest in MФ and cDCs 

(Figure 6.19 b-c). Therefore, we examined whether the downregulation of the “IFN-related” 

signaling is associated with an increased expression of the genes involved in 

“immunosuppression and support of tumor growth” across monocyte-to-macrophage cell 

clusters. The distribution of cells from Mo, Int, MФ_1 and MФ_2 clusters was plotted along 

the expression level of Stat1, Ifitm2, and Irf7 genes from “IFN-related” and Trem2, Apoe and 

C1qa from “immunosuppression and support of tumor growth” transcriptional program 

(Figure 6.19d). Indeed, the proportion of Mo increased towards increasing expression of Stat1, 

Ifitm2, and Irf7, suggesting that Mo is a major population expressing the “IFN-related” 

transcriptional program. In contrast, the MФ_1 and MФ_2 frequency increased along with an 

increasing expression of Trem2, Apoe and C1qa.  

Such an expression pattern supports the notion that the monocyte-to-macrophage transition 

can be associated with profound changes in the expressed transcriptional program, reflected in 

diminished IFN-related signaling and enhanced tumor-supportive phenotype.  

6.20. SEX DIFFERENCES IN MHCII EXPRESSION 

Sex is an important prognostic marker in GBM patients influencing the incidence and 

disease outcomes 83. In this study, both scRNA-seq and CITE-seq were performed on male and 

female animals. The unsupervised cell clustering of scRNA-seq showed sex-dependent cell 

grouping in clusters composed mostly of the cells from glioma-bearing brains (Act-MG, 

Mo/MФ), but not in clusters in which the majority of cells originated from the naïve brains 

(Hom-MG), pointing to differences in immune cell activation between male and female animals 

(Figure 6.20 a).  

To investigate the sex-related differences, we performed a DE analysis on the 

scRNA-seq dataset and compared the transcriptomic profile across sexes in the Act-MG and  
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Figure 6.20 | Sex-related differences in MHCII expression (a) Illustration of the analytical approach. UMAP 

plot demonstrates the distribution of male and female cells across cell clusters, GCM – glioma conditioned 

medium. (b) Volcano plots depicting the results of DE analysis in the scRNA-seq data set across sexes in Act-MG 

and Mo/MΦ infiltrating gliomas. (c) Density plots demonstrating expression MHCII encoding genes upregulated 

genes by male-derived cells. (d)  and expression of genes related with migration and IFN, upregulated by the 

female-derived cells. Kolmogorov-Smirnov test with Bonferroni correction, * pval ≤ 1e-2, ** pva l≤ 1e-3, *** 

pval ≤ 1e-4, **** pval ≤ 1e-5. (e)  Gene expression analysis of MHCII and Cd74 genes in murine primary microglia 

co-cultured with GL261 cells. Gene expression differences determined by qPCR are depicted as dCt with Actb as 

a house keeping gene  
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Mo/MФ groups (Figure 6.20 a). The DE analysis indicated that male Act-MG highly 

upregulate H2-Ab1, H2-Eb1, H2-Aa coding for the components of MHCII and Cd74 – encoding 

an invariant MHCII chain implicated in folding and trafficking of the MHCII protein (Figure 

6.20 b). Female-derived cells showed higher expression of e.g. the cytokine encoding genes: 

Ccl3, Ccl9 (Act-MG) and Ccl2, Ccl4 (Mo/MФ), as well as Apoe (Act-MG) and some of the 

IFN-related genes Ifit3, Rsad2 (Mo/MФ). Next, the expression of the selected DE genes was 

verified within individual subpopulations (Figure 6.20 c,d). The MHCII encoding genes 

showed a profound difference between males and females, not only in the Act-MG population 

but also in Int and MФ (Figure 6.20 c). Regarding the genes expressed at higher level in 

female-derived cells, cytokine encoding genes were expressed at a slightly higher level in Act-

MG (Ccl4) and Int (Ccl2, Ccl4). Whreas, Ifit3 showed more profound changes, and more female 

cells with high Ifit3 expression were found in Mo and Int subpopulations (Figure 6.20 d).  

The sex difference in the expression of the MHCII encoding genes was verified in another 

model: male- and female-derived murine primary microglial cells that were co-cultured with 

GL261 cells (Figure 6.20 e). Expression levels of the selected genes were sex-dependent with 

higher expression in male- compared to female-derived cultures. Both GL261-stimulated and 

non-stimulated microglia derived from males showed increased MHCII encoding genes 

expression, which suggests an intrinsic capability of male microglia to overexpress the MHCII 

encoding genes that is detectable already in immature microglia. 

6.21. MHCII AND IFN-RELATED SIGNATURES IN MALE VS FEMALE 

The sex differences in the levels of MHCII and IFN response genes were evaluated in the 

pre-symptomatic and symptomatic glioma stages in the CITE-seq data set (Figure 6.21 a). 

UMAP showing the distribution of the female- and male-derived cells indicated a sex-directed 

cell grouping. The monocytic clusters showed the enrichment of female cells, and macrophage 

clusters of male cells. As has been already shown, the IFN score showed the highest level in 

Mo, whereas MHCII protein was elevated in DCs and MФ clusters (Figure 6.21 a). 

Expression of the MHCII protein is induced by the tumor. However, the dynamics of the 

MHCII induction differed between the sexes (Figure 6.21 b). In males, the MHCII level was 

high already on day 14 and remained stable on day 21. Contrastingly, females showed low 

MHCII expression at day 14, and although its level increased on day 21, it was still lower 

compared with males. The effect was observed both in MG and Mo/Ф (Figure 6.21 b). The 

distribution of the MHCII level across individual GAM subpopulations demonstrated that on 
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day 14 the sex differences are found in Hom-MG and Act-MG clusters, as well as in the clusters 

of infiltrating cells – Mo and MФ_2. At day 21 the difference between sexes diminished due to 

increased level of MHCII in female cells, which resulted the lack of difference in Mo and 

MФ_2, and less pronounced differences in Hom-MG and Act-MG. Importantly, the Hom-MG 

clusters on days 14 and 21, represent microglia cells that were derived from the tumor-bearing 

 Figure 6.21 | Sex differences in MHCII and IFN response expression. (a) The sex differences were verified 

in CITEseq data set across two tumor stages. UMAP plots demonstrate the distribution of female- and male-

derived cells, and the distribution of MHCII protein expression and IFN score level. (b,d) Boxplots depicting 

MHCII protein level (b) and IFN score level (d) across sexes and time points. Upper and lower hinges of the 

boxplots correspond to 25th and 75th percentile respectively, bar in the center represents median value and whiskers 

range from -1.5 to 1.5 of the IQR. Wilcoxon test with Bonferroni correction **** pval < 1e-5 (c,e) Density plots 

demonstrating sex differences in MHCII and IFNscore across individual cell clusters.  Kolmogorov-Smirnov test 

with Bonferroni correction, * pval ≤ 1e-2, ** pva l≤ 1e-3, *** pval ≤ 1e-4, **** pval ≤ 1e-5.    
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hemispheres and clustered together with the microglia derived from naïve brains. Hom-MG 

from D14 and D21 may encompass microglia that did not undergo full tumor-induced 

activation. The MHCII level in males was induced already in the fraction of cells from 

Hom-MG clusters and further upregulated in Act-MG. Contrastingly, in female cells the MHCII 

level was close to zero in Hom-MG clusters both at day 14 and 21; showed binomial distribution 

in Act-MG at day 14; and in Act-MG reached a similar level to male cells at day 21 

(Figure 6.21 c). Therefore, suggesting delayed induction of MHCII by females, as compared 

to male microglia cells in response to the tumor. 

The IFN score showed the opposite pattern, as females exhibited higher expression of the 

IFN response genes. In MG, the IFN score was at the same level on days 14 and 21 in males 

but increased in females. In Mo/MФ the tumor-induced expression of the IFN response 

diminished in time in both sexes, but at both pre-symptomatic and symptomatic stages the 

female-derrived cells showed higher IFN score level (Figure 6.21 c). Interestingly, although 

the IFN response genes were mostly enriched in the monocytic fraction, the sex difference in 

the IFN score was most pronounced in the clusters of differentiated macrophages - MФ_1, 

MФ_2. Comparing day 14 and 21, the difference between sexes diminished due to a decrease 

of the IFN score in female cells, although it was still significant in MФ_1 and MФ_2.  

This observation indicates that the downregulation of the IFN-response genes that is 

associated with the monocyte-to-macrophage signature changes, might be delayed in females 

as compared with males.   

6.22. SEX-RELATED DIFFERENCES IN GAM PROPORTIONS 

As the sex-related differences were found in the IFN-response genes, a transcriptional 

signature that is enriched mostly in monocytes, we examined the contribution of individual cell 

types to the GAM population across sexes (Figure 6.22 a).  

Indeed, the Mo population in females was two times more frequent as compared with males, 

at both glioma stages (Figure 6.22 b). Additionally, males exhibited a substantially higher 

proportion of MΦ that constituted over 30% of GAMs already at day 14 and their frequency 

increased to 45% at day 21. The MΦ frequency in females was much lower - 13% at day 14, 

and 27% at day 21  (Figure 6.22 b). To verify this observation, we employed public data sets 

from single-cell studies on immune cells from human GBM samples that consisted of both male 

and female patients.. In the CyTOF data set of Friebel et al (2020), the separation of microglia 
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and differentiated macrophages was not possible since the authors included the CD49d 

(macrophage-enriched) in the analysis of only a subset of patient-derived samples. Therefore, 

the GAM population encompassing both microglia and macrophages was distinguished and 

compared with the Mo population. The Mo and GAMs proportion was assessed for male (n=7) 

and female (n=7) derived GBM samples (12 primary, 2 recurrent). The variation across female 

samples was high. Still, we found that 2 female patients had high Mo frequency, whereas in 

males the Mo frequency was rather low (Figure 6.22 c). The proportion of cell populations was 

 Figure 6.22 | Sex differences in monocyte-associated IFN score and monocyte proportion. (a) The 

proportions of distinct populations among GAMs across sexes were investigated in the CITE-seq and human 

public data sets (b) Proportion of the identified cell populations across sexes and time points in the CITE-seq data 

set (c) Proportion of Mo and GAMs (microglia and macrophages) calculated based on public CyTOF data set 

from human GBM (n=14) (Friebel et al. 2020). Numbers inside the bars represent a number of cells in each group. 

(d) Proportion of Mo, MФ and MG calculated based on public scRNA-seq data set from primary human GBM 

(n=7) (Antunes et al. 2021). Numbers inside the bars represent number of cells in each group.   
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also verified for the scRNA-seq data set of Antunes et al. (2021) from primary GBM samples 

(n=7). The number of Mo identified by the authors was very low, impeding comparisons 

between sexes. Still, the proportion of MΦ was higher for males, whereas females showed a 

higher proportion of MG (Figure 6.22 d).  

Thus, the results obtained from our murine glioma model and public human GBM data sets 

suggest that the number of monocytes and differentiated macrophages may differ between 

sexes. However, due to the low number of samples, this observation requires further 

verification.  
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7. Discussion 

7.1. DISSECTING THE COMPOSITION OF MYELOID INFILTRATES IN GLIOMA TME 

 One of the important outcomes of this study is a demonstration that the results of 

scRNA-seq and CITE-seq analyses of the CD11b+ cells from naïve and tumor-bearing brains 

show high reproducibility. However, comparing the results of scRNA-seq and CITE-seq 

analyses we found that the inclusion of protein markers improves the identification and 

characterization of cell types, which is particularly important in the case of cells sharing many 

myeloid markers.  

Transcriptomic and proteomic studies of the same cells/tissues showed that the mRNA and 

protein levels are not always corresponding. In fact, around 50% of expressed mRNA molecules 

are poorly represented at the protein level 66. In the present study, the accordance of the 

transcript and its surface protein level was good for Tmem119/Tmem119, Ly6c2/Ly6C and 

Cd52/CD52, while there was no such good agreement for Itgam/CD11b, Ptprc/CD45, Itga4/ 

CD49d, Cd74/CD74, H2-Aa/MHCII, Cd274/PD-L1. Therefore, the application of the designed 

protein panel in the CITE-seq allowed revising the previously proposed protein markers for 

separation of monocytes, macrophages, and microglia.  

Dissecting the CNS resident, microglial GAMs from GAMs infiltrating from the periphery 

was one of the main goals in this study.  We confirmed that Tmem119 demarcated microglia 

and CD49d was found exclusively on monocytes/macrophages in glioma TME, which is in 

agreement with previous cell lineage tracing and CyTOF studies 39,59,61. Surprisingly, the CD45 

level also reliably discriminated monocytes/macrophages from other GAMs in glioma TME, 

despite prior criticisms and suggestions that CD45 could be upregulated in the activated 

microglia55.  

An important finding of this study is that the Lgals3 and the encoded protein Gal-3 are 

expressed predominantly in monocytes/macrophages, which was shown with scRNA-seq and 

confirmed by flow cytometry and IHC analyses. Unfortunately, only the intracellular staining 

of Gal-3 allowed discriminating monocytes/macrophages from microglia, thus it could not be 

validated with CITE-seq and antibodies detecting surface markers. Additionally, the high level 

of MHCII allowed demarcating the subpopulation of dendritic cells in glioma TME that were 

likely derived from infiltrating monocytes. The application of CITE-seq confirmed the 

expression of PD-L1 by GAMs and indicated that the differentiated macrophages are the main 
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source of this immune checkpoint protein in glioma TME, pointing to the important role of this 

population in immunosuppression.  

7.2. THE UNEXPECTED HETEROGENEITY OF MICROGLIA IN THE HEALTHY BRAIN 

Microglia are the most abundant immune system cells of the CNS 167,168. The predominance 

of microglia among CD11b+ cells has been confirmed in the presented analysis. Under 

physiological conditions microglia (which we described as homeostatic microglia, Hom-MG) 

exhibit the transcriptional heterogeneity that resulted in the discrimination of the specialized 

subpopulations. The two major transcriptional programs identified were “canonical 

microglia” with the enriched expression of core microglia genes (Tmem119, Gpr34, Fcrls, 

P2ry12, Cx3cr1, Selplg, Olfml3) and “transcription factor-related” showing a high 

expression level of genes encoding transcription factors and their co-factors (Klf2, Klf4,  Egr1, 

Cited2, Fos, Fosb, Atf3, Ier2, Jun, Junb). Interestingly, the defined transcriptional programs 

showed gradual changes between clusters, and besides these two microglia subpopulations, we 

found a cluster of microglia that showed an intermediate level of both programs. Thus, pointing 

to the dynamics of the microglial expression pattern. It is assumed that the variability in 

transcriptional programs may reflect discrete functional states of microglia. However, we 

cannot exclude a possibility that the observed transcriptional diversity of microglia reflects 

differences in microglia origin from various brain structures, as the CD11b+ cells were isolated 

from whole-brain and spatial information was lost due to homogenization.  

The previously published deep scRNA-seq study of microglia at different life stages and 

from various brain regions demonstrated that microglia from adult mice belong to two 

functional groups characterized by expression of homeostatic microglia genes and immediate 

response genes 151. These defined gene expression patterns largely overlapped with the 

transcriptional programs determined in our analysis. The authors speculated that the immediate 

early genes e.g. Fos and Egr1 that are readily upregulated in response to an external stimulus, 

may be induced by a sorting procedure. Thus, it remains to be determined whether the 

“transcription factor-related” expression pattern demarcates transcriptionally active microglia 

predisposed to rapidly react to pathological disturbances or this program is an experimental 

artifact.  

In addition, interesting cell clusters with the characteristics of early and progenitor 

microglia have been detected. These cells expressed Csf1, Ifit3, Mcm5, Dab2, Cxcr2 genes. 

CSF1 is a cytokine necessary for microglia maintenance, proliferation, and differentiation. 
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Whereas CXC chemokine receptor 2 (CXCR2) expressed on microglia may ensure cell 

mobility in case of a rapid translocation to a damaged site is needed.   

The presence of early and progenitor microglia may be a reservoir for self-sustaining cells 

as microglia do not renew from hemopoietic cells and maintain a stable population during 

a lifetime. Elmore et al. (2014) reported that pharmacological depletion of microglia with a 

CSF1R inhibitor triggers the mobilization of dormant microglial progenitors in the CNS 

allowing rapid repopulation and that the repopulating microglia originated from the 

proliferation of the latent progenitors 169.  

7.3. MYELOID CELL HETEROGENEITY IN THE GLIOMA MICROENVIRONMENT 

The second main aim of this study was to provide functional characteristics of a given 

myeloid cell type infiltrating the glioma TME. We demonstrate that the presence of tumor cells 

greatly increases the diversity of myeloid cells in the brain.  

First, we found that microglia undergo a tumor-induced activation, giving rise to a 

population described as activated microglia (Act-MG). Act-MG downregulated canonical 

microglial genes compared with Hom-MG. The phenomenon of reduction of canonical 

microglia genes has been previously described in the disease-associated microglia in Alzheimer 

disease 157. In glioma TME, Act-MG upregulated the genes/proteins involved in “antigen 

presentation” and “IFN response”, as well as showed a specific increase of the Ccl12 and C4b 

gene expression. Microglial cells activated several, specialized transcriptional patterns. As a 

result, four subpopulations of the tumor-activated microglia were distinguished: Act-MG_1 

augmenting the “transcription factor-related” program similar to the one found in 

homeostatic microglia and the “cytokine-related” program; Act_MG_2 that showed induced 

expression of the common Act-MG genes; Act-MG_3 upregulating genes involved in “lipid 

metabolism and phagocytosis” and Act-MG_4 demarcated by the “proliferation-related” 

genes. The identification of microglia (Act-MG_4) expressing the proliferation-related genes 

(i.e. Ube2c, Top2a, Stmn1, Ccna2, Cdk1, and Tubb5, Ccnb1, Ccnb2) may indicate the source 

of those microglia cells. The increase in activated microglia can result from local proliferation, 

rather than microglia migration from other sites of the CNS. In addition, we found an increased 

level of PD-L1 in Act-MG that was limited to cells belonging to the Act-MG_3 and Act-MG_4. 

 Besides the increasing heterogeneity of resident microglia, the tumor-bearing brains 

showed the profound infiltration of myeloid cells from the periphery. The infiltrating 

populations encompassed monocytes/macrophages (Mo/MФ), and the monocyte-derived 
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CD11b+ dendritic cells (DCs). The Mo/MФ population exhibited specialized transcriptional 

programs that only to some extent overlapped with the tumor-induced expression detected in 

microglia. The transcriptional patterns common for Act-MG and Mo/MФ (“antigen 

presentation”, “IFN-response”, “lipid and phagocytosis-related”) were found to be induced 

at a substantially higher level in cells from the Mo/MФ population. Increased expression of the 

“antigen presentation” genes represent a functional activation of myeloid cells that are 

professional antigen processing and presenting cells in the CNS. Upregulation of “lipid 

metabolism and phagocytosis” transcriptional program likely reflects the increased 

phagocytic activity of Act-MG and Mo/MФ that is necessary to remove dying neurons and glial 

cells, and to modulate the extracellular matrix to facilitate tumor migration and invasion. The 

increases of the phagocytic properties of microglia have been observed in microglia-glioma 

co-cultures in vitro 32,50.   

Additionally, Mo/MФ and DCs exhibited an enhanced expression of genes characterizing 

the “tumor support and immunosuppression” phenotype, which is reflected by upregulation 

of genes known to promote glioma progression: Trem2, Apoe, C1qa, C1qa, Cd9; highly 

elevated levels of the immunosuppressive factors: the immune checkpoint PD-L1 protein and 

Il1rn, Il18bp genes encoding the inhibitors of pro-inflammatory cytokines. TREM2 (triggering 

receptor expressed on myeloid cells-2) cooperates with CSF-1 in supporting macrophage 

survival and proliferation 80. ApoE (apolipoprotein E) is a ligand of TREM2. Cd9 encodes the 

tetraspanin CD9 protein that can interact with other tetraspanins and with different 

transmembrane and intracellular proteins 170. The complement system C1q protein is a part of 

innate immunity and its deficiency is associated with autoimmune diseases 171. 

7.4. IDENTIFICATION OF SUBPOPULATIONS REFLECTING MONOCYTE-TO-

MACROPHAGE TRANSITION 

In this study, thanks to a precise identification of transcriptional programs in the Mo/MФ 

infiltrating from the periphery to the tumor, we found transcriptional changes indicative of the 

monocyte-to-macrophage transition within the glioma TME. Based on gene expression profiles 

the cell clusters were assigned to three differentiation stages: monocytes (Mo), intermediate 

monocytes/macrophages (Int), and differentiated macrophages (MФ_1 and MФ_2). 

Monocytes were likely cells freshly entering the brain parenchyma and retaining their 

monocytic, immature characteristics.  

Our observation of the MDM transition occurring in the glioma TME is consistent with the 

previous reports on human GBMs and a murine glioma model. Friebel et al. (2020) showed 
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continuous changes in the expression of monocyte to macrophage protein markers in the 

CyTOF study on human gliomas and brain metastases 72. Antunes et al. (2021) also identified 

the monocytes, monocyte-to-macrophage intermediates and differentiated macrophages in the 

scRNA-seq analysis of human GBM samples and GL261 murine gliomas 77. The authors found 

that CCR2 deficiency blocks monocyte recruitment to the glioma microenvironment, resulting 

in depletion of a vast majority of monocytes and the reduction of the macrophage proportion 

by about 30%. Still, the number of remaining differentiated macrophages in glioma TME was 

substantial, pointing to a Ccr2-independent macrophage accumulation. We demonstrated that 

CD49d is expressed at a similar level in infiltrating MDMs and CD11b+ DCs. CD49d is an 

integrin involved in leukocytes migration to the brain under pathological conditions 172. Akkari 

et al (2020) showed that the CD49d blockade inhibited the monocyte recruitment to the glioma 

TME and reduced the number of differentiated macrophages by half 173. This implies alternative 

mechanisms of the MDM recruitment.  

Interestingly, we demonstrated that the monocyte-to-macrophage transition is associated 

with a switch of the transcriptional program. Monocytes displayed the enrichment of the 

“IFN-response” transcriptional pattern that diminished in the Int population and was expressed 

at a low level in the MФ_1/2 subpopulations. Whereas the “tumor support and 

immunosuppression” genes showed the opposite changes, as that program was expressed at a 

very low level in Mo, increased in Int and showed the highest expression in MФ_1/2 

subpopulations. The MФ_2 population was additionally characterized by upregulation of the 

“lipid metabolism and phagocytosis” transcriptional program. Those transcriptional changes 

suggest that monocytes in TME are likely cells freshly entering into the brain parenchyma and 

retaining their monocytic, immature characteristics and expressing many inflammatory genes 

suggestive of their anti-tumor activity. The anti-tumor activity is gradually lost in the glioma 

TME, as the signature of differentiated macrophages is associated with increased expression of 

immunosuppressive factors.   

The identified transcriptional patterns in GAMs to some extent overlap with the results of 

a scRNA-seq study on murine GL261 gliomas and human GBMs 77. Antunes et al. (2021) 

showed the interferon-related and phagocytosis/lipid-related expression patterns that were 

induced at a higher level in the fraction of MDMs compared with microglia. Additionally, some 

of the interferon response genes (Rsad2,  Cxcl10) showed the enrichment in monocyte and 

monocyte-to-macrophage transitory populations. The authors showed the presence of the  

“hypoxic signature”, which was reported in previous scRNA-seq studies on human GBMs 73,76.  
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In the present study, the genes of the “hypoxic signature” were not co-expressed by the same 

cells but rather showed the enrichment across different cell clusters.  

7.5. IMPLICATIONS OF THE “INTERFERON-RELATED” GENE EXPRESSION  

Type I interferons are cytokines involved in the activation of immune cells in the response 

to pathogenic stimuli, which may exert anti-tumor action e.g. via induction of the 

pro-inflammatory activation of macrophages, apoptosis of Tregs, or inhibition of 

angiogenesis 174. Interferons have been considered as potential adjuvants in anti-cancer 

therapies. However, clinical trials showed minor benefits as compared to the established 

treatments 78. Bulk RNA-seq studies identified expression profiles related to the IFN response 

in human GBMs 175, and an increased “interferon signature” was associated with a worse patient 

prognosis 176. Such association is surprising, as interferons were shown to exert an anti-tumor 

effect in multiple studies 174.  

Type I interferons induce strong changes in transcription e.g. via enhancing expression 

of genes encoding interferon-induced transmembrane (IFITM), interferon-induced protein with 

tetratricopeptide repeats (IFIT), interferon response factor (IRF) families, and other 

downstream genes. In the present and other studies, the expression of the interferon-response 

genes was much higher in infiltrating MDMs (or their subpopulations) compared to 

microglia 60,77. The abundance of MDMs was negatively correlated with a patient prognosis in 

contrast to microglia 38,55,72, and the IDH-mut gliomas that are characterized by better survival 

showed a minor MDM infiltration 60,72. Thus, the increased “interferon signature” found in bulk 

GBM datasets might be in fact an indicator of the increased monocyte infiltration that is 

associated with the high accumulation of the tumor-supportive macrophages. This issue cannot 

be resolved employing bulk RNA-seq methods. However, an increasing number of the 

scRNA- eq data on human gliomas might provide better resolution of the MDM subpopulations 

and their specific roles in tumor progression.  

7.6. THE IMMUNOSUPPRESSIVE ROLE OF DIFFERENTIATED MACROPHAGES 

We demonstrate that the populations of differentiated macrophages (MФ_1, MФ_2) exhibit 

the highest level of the immunosuppressive immune checkpoint protein PD-L1 and Il1rn, 

Il18bp genes. Additionally, the MФ populations are characterized by the enriched expression 

of genes such as Trem2, Apoe, Cd9, C1qa, C1qb, Gbnmp, Lgals3, Fabp5 that recently have 

been to be implicated in tumor progression.  
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Expression of TREM2 was positively correlated with tumor growth, and the protein has 

been implicated in promoting the immunosuppressive TME 79. TREM2 cooperates with CSF-1 

in sustaining macrophage survival and proliferation 80. ApoE is the best documented ligand of 

TREM2 81 and CD9 is recognized as an anti-inflammatory marker of monocytes and 

macrophages 82. Expression patterns of the “lipid metabolism and phagocytosis” genes such as 

Gpnmb (transmembrane Glycoprotein Nmb), Lgals3 (Galectin-3) and Fabp5 (Fatty Acid 

Binding Protein 5), suggest their involvement in inflammation, cell-matrix adhesion, and lipid 

metabolism, respectively.   

C1qa and C1qb encode chains of the complement component 1q (C1q), a constituent of the 

classic complement pathway. The balance of the complement system components might be lost 

in the tumor-bearing organisms 177. C1q deficiency ultimately leads to the development of an 

autoimmune disease systemic lupus erythematosus (SLE) 178.  Stimulation of human peripheral 

blood mononuclear cells with C1q complexes in vitro reduced expression of the IFN-response 

genes 171.   

Therefore, the transcriptomic profile of differentiated macrophages, together with the 

highest level of the immune checkpoint protein PD-L1, suggest a key role of this myeloid 

population in the induction of the immunosuppressive environment within glioma TME.   

7.7. CELL TYPE VERSUS CELL STATE 

Cell type identification is one of the challenges in the analysis of the single-cell sequencing 

data that has a major influence on biological interpretation and for which no standards have 

been yet established. Cell identities are typically assigned to clusters - groups of cells with 

similar transcriptomic profiles, obtained as a result of clustering. Clustering is, by definition, 

an unsupervised method, although the number of obtained cell clusters can be controlled.  

The most common approach of cell type annotation is an expert-guided identification, 

employing cell type marker panels and subsequent exploration of the data in search for 

genes/proteins characterizing a given cluster or groups of clusters. We have demonstrated in 

the present study that the same cell type (i.e. microglia) may express distinct transcriptional 

programs elicited by tumor-induced activation (Hom-MG and Act-MG). We found that 

activated cells within the tumor microenvironment can, in fact, express several transcriptional 

programs e.g. Act-MG are enriched in “cytokine-related”, “antigen presentation”, 

“IFN- response” and “phagocytosis and lipid-related” transcriptional patterns. A variety of the 

identified transcriptional programs can result from a transient activation of a particular program 
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or different spatial localization of cells and their exposure to specific stimuli e.g. a tumor edge, 

tumor core, hypoxia, proximity to blood vessels. Several studies (including ours) demonstrated 

that myeloid cells exhibit substantial transcriptomic differences depending on their 

localization/distance to the tumor 73,179. Consistently, the proportion of microglia to 

macrophages differs between a tumor core and a tumor edge. Thus, it remains to be elucidated 

to what extent the transcriptional programs of myeloid cells reflect their activation in specific 

regions of the glioma TME.  

The same transcriptional programs can be shared between different cell types, and show 

gradual changes e.g. we found that the “interferon response” was highly upregulated in Mo and 

decreased through the Int to the MФ population, which is consistent with losing the 

pro-inflammatory phenotype by monocytes and acquiring the immunosuppressive phenotype 

during maturation of macrophages in the glioma TME. While these phenomena are difficult to 

be verified in cells isolated from tumor samples, the kinetics of transcriptional changes during 

tumor progression could be observed in animal models and provides experimental support for 

monocyte to macrophage transition instructed by tumor-derived stimuli.  

Altogether, the acquired results show that a cell type and cell state can be perceived as two 

layers of information that are not necessarily enclosed in the single-cell clusters. Importantly, 

cell type might be usually annotated with the use of the established markers, excluding novel 

populations that have not been yet described. Whereas, cell state is rather a collection of 

transcriptional changes indicative of functional specialization. As shown in this study, the 

transcript level does not necessarily correspond to the protein level. Thus, the cell state 

annotation should rely on a group of functionally similar genes, rather than single gene markers. 

The application of such strategy  could improve the reproducibility between single-cell studies.  

7.8. SEX DIFFERENCES IN GAM RESPONSES  

Sex differences in tumor incidence (male-to-female ratio of 1.6:1 and 2:1 in mesenchymal 

GBMs), variations in transcriptomes, and patient outcomes of adult GBM patients have been 

previously reported 83. Sex-specific disease outcomes can be related to immune functions, 

because the efficacy of cancer immunotherapy in humans has been shown to depend on sex, 

with better outcomes in males 87.  

Previous bulk RNA-seq and proteomic studies demonstrated that in naïve mice, male 

microglia show the enrichment of inflammation and antigen presentation-related genes, 
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whereas female microglia have higher neuroprotective capacity 95,97. Until now, sex differences 

have been largely unexplored in animal studies of glioma immunobiology. 

In this work, we demonstrate for the first time the sex-dependent differences in responses 

of GAMs to the tumor. This notion is supported by several findings. First, the antigen 

presentation components were expressed at higher levels in myeloid cells (especially Act-MG, 

Int, MФ) derived from male glioma-bearing brains. The observation, first made in the scRNA-

seq analysis, has been verified by CITE-seq and qPCR in primary microglia exposed to glioma 

in in vitro co-cultures. The differences were found both at the RNA level of MHCII encoding 

genes (Cd74, H2-Aa, H2-Ab1, H2-Eb1) and at the protein level (MHCII complex).  

Secondly, the interferon-response genes showed the enrichment in MФ populations from 

female brains with glioma. Interestingly, the sex differences in both MHCII level and the 

interferon response were most pronounced at the pre-symptomatic glioma stage (14 days post-

implantation) and diminished at the symptomatic stage (21 days post-implantation).  

Third, the contribution of the differentiated macrophages to the GAM population was higher 

in males. In females, MФ constituted 13% and 31% of GAMs at 14 and 21 day 

post-implantation, respectively. Whereas in males MФ constituted 27% of GAMs already at 

day 14, and their proportion increased to 45% at day 21. Additionally, females showed a two 

times higher proportion of monocytes compared to males.  

Public data sets were employed to validate this finding. In the re-analysis of CyTOF data 

from human GBMs, the proportion of monocytes was found to achieve high values in females, 

which was not observed in males 72. Whereas males showed a bigger fraction of macrophages 

compared with females in the scRNA-seq data from human primary GBMs 77.  A  limited 

number of human studies with a relatively low number of subjects of both sexes makes it 

difficult to compare male and female gliomas. As the number of patients in the re-analyzed data 

sets was quite low, this observation requires further verification. 

Nevertheless, all observed sex differences consistently indicate a more persistent 

pro-inflammatory response in females as compared with the male counterparts. This difference 

is reflected by the variety of the transcriptional programs that change with the tumor progression 

and a lower accumulation of the immuno-suppressive macrophages, despite a higher number 

of infiltrating monocytes.  
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7.9. CLINICAL IMPLICATIONS OF THE MYELOID CELL DIVERSITY 

Understanding of the myeloid cell diversity within glioma TME and dissecting population-

specific functions might greatly enhance a quest for immune-therapeutics aiming at reactivation 

of the host antitumor response.  

The immune checkpoint blockade (ICB) therapies have been successful at reactivation of 

the T cell-mediated immunity and improved patients outcomes in various cancers, including 

melanoma and non-small cell lung cancer. However, ICB failed to increase survival of GBM 

patients 180, likely due to a reduced ability of cytotoxic T lymphocytes to enter and act in the 

immunosuppressive, tumor-bearing brain parenchyma. 

In malignant gliomas, microglia and monocytes/macrophages are the predominant immune 

cell populations. However, only the frequency of monocytes/macrophages negatively correlates 

with a patient’s survival, whereas the abundance of microglia does not show such correlation 39. 

We demonstrated in this study that monocytes/macrophages localize predominantly in the 

tumor core and outnumber microglia at the symptomatic stage of glioma growth. In addition, 

differentiated macrophages that accumulate in the tumor niche were found to be the major 

source of the immunosuppressive and tumor-supportive factors. Thus, drugs blocking 

monocyte infiltration or depleting differentiated macrophages may have clinical potential.  

Pharmacological GAMs depletion has been already tested in animal studies, resulting in 

attenuated tumor growth 34,181. Colony stimulating factor 1 receptor (CSF1R) is essential for 

survival of microglia and MDMs. Treatment with a CSF1R inhibitor (PLX3397, Pexidartinib) 

showed a good efficacy in preclinical studies182. In GBM patients, Pexidartinib efficiently 

reduced the number of circulating monocytes and showed good CNS penetration, however it 

failed to show anti-glioma efficacy 183. This lack of effectiveness could be ascribed to a high 

expression of CSF2/GM-CSF by glioma cells, which stimulates macrophage proliferation and 

thus may compensate for the CSF1R inhibition 184.  

In this study, CD49d was shown to be uniformly expressed by all monocyte/macrophages 

and CD11b+ DCs. CD49d and CD29 form an integrin dimer VLA-4 (very late antigen 4) that 

is an adhesion molecule involved in lymphocyte homing to the inflamed brain 172. In a study 

employing transgenic mouse gliomas, the CD49d blockade was found to interfere with the 

MDM infiltration to glioma, without affecting the number of circulating monocytes, and to 

reduce the number of differentiated macrophages in glioma TME by a half 173. The anti-CD49d 

antibody, Natalizumab, is an approved drug for the treatment of relapsing-remitting multiple 
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sclerosis. Thus, knowing the drug safety, pharmacokinetics and side effects, the repurposing 

for glioma treatment might be feasible in a shorter time. 

Still, in order to induce a successful reactivation of immune system cells in GBM patients, 

combination of therapies that will target multiple routes of immunosuppression, might be 

required. Inter-patient variability might also be an important factor, thus the development of the 

immune infiltrate diagnostic markers could help to “tailor” an immuno-modulating therapy to 

the patient immune environment.  
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8. Summary and conclusions 

In this study, we implemented single-cell omics approaches: scRNA-seq and CITE-seq, and 

demonstrated that myeloid cells exhibit profound heterogeneity in glioma TME. The observed 

diversity can be ascribed to: (1) contribution of distinct cell types (microglia, MDMs, DCs), (2) 

occurrence of cells of the same type but at different   differentiation stages, (3) expression of 

specialized transcriptomic programs that can be either shared across different cell types or 

enriched in a given population. 

The following conclusions can be drawn based on the results of this dissertation: 

I. Microglia and infiltrating myeloid cells (MDMs and DCs) can be reliably distinguished 

using protein markers: Tmem119 (microglia) and CD49d, CD45, intracellular Gal-3 

(MDMs and DCs). 

II. In glioma TME, microglia and MDMs exhibit diverse transcriptional programs that are: 

i. common: “Antigen presentation”, “Lipid metabolism and phagocytosis” 

ii. microglia-enriched: “Cytokine-related”, “Proliferation-related”  

iii. MDMs-enriched: “IFN-related”, “Immunosuppression and tumor support” 

III. Microglia and MDMs show distinct localization with a respect to the tumor (microglia – 

adjacent brain parenchyma, MDMs – tumor core) and substantial differences regarding 

the tumor-induced activation: stronger expression of the identified transcriptional 

programs in MDMs.    

IV. MDMs exhibit transcriptional and surface protein changes indicative of a 

monocyte-to-macrophage transition in glioma TME. The transition is connected with the 

downregulation of the interferon-response genes and upregulation of the 

immunosuppressive PD-L1 protein and genes implicated in supporting tumor growth.  

V. Monocytes are found both at the pre-symptomatic and symptomatic stages at the same 

frequency, whereas differentiated macrophages show increasing proportion and 

constitute the most abundant myeloid population at the symptomatic stage.  

VI. Sex impacts the glioma-induced responses of myeloid cells. In males, GAMs show an 

elevated level of MHCII, while females have the increased expression of the 

interferon-response genes. The differences might be due to a higher proportion of 

monocytes found in females and delayed monocyte-to-macrophage transition.  
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In summary, malignant gliomas are inevitably lethal tumors with very limited therapeutic 

options. The failure of novel therapeutics observed in clinical trials is largely due to a substantial 

inter and intra-tumor heterogeneity. The immune cells contribute to this complexity shaping the 

glioma microenvironment, influencing tumor progression and its response to therapy. 

Dissection of functions of individual components of the immune microenvironment in 

malignant gliomas may help to resolve this complexity and pave ways to design therapies 

tailored to specific immune phenotypes.  
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List of symbols and abbreviations 
 

 

I. Abbreviations 

2-HG 2-hydroxyglutarate  

α-KG alpha ketoglutarate  

Ab-oligo antibody-oligonucleotide conjugate 

AC astrocyte 

Act-MG tumor-activated microglia 

Act-MG tumor-activated microglia 

ANOVA analysis of variance 

APC antigen presentation cells 

BM bone marrow 

CD cluster of differentiation 

cDC1 classical dendritic cells 1 

cDC2 classical dendritic cells 2 

cDCs conventional dendritic cells 

cDNA complementary DNA 

CITEseq Cellular Indexing of Transcriptomes and Epitopes by sequenicng 

CNS central nervous system 

CyTOF Cytometry by Time-Of-Flight 

DAPI 4',6-diamidyno-2-fenyloindol 

DCs dendritic cells 

DMEM Dulbecco's Modified Eagle Medium  

EMP erythromyeloid progenitors  

FACS Fluorescence Activated Cell Sorting  

FBS fetal bovine serum  

GAM glioma associated microglia and macrophages 

GBM glioblastoma multiforme 

G-CIMP  glioma CpG island methylator phenotype 

GEM gel-bead in emulsion  

Hom-MG homeostatic microglia 

Hom-MG homeostatic microglia 

HSC hematopoietic stem cells  

HTO hashtag-oligo barcode  

ICB immune checkpoint blockade 

ICB immune checkpoint blockade 

IDH isocitrate dehydrogenase 

IFN interferon 

IFN interferon 

Int monocyte/macrophage intermediate 

Luc luciferase 

MDM monocyte-derived macrophages 
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MDMs monocyte-derived macrophages  

MDSC myeloid derived suppressor cells  

MES mesenchymal 

MG microglia 

MG microglia 

Mo monocytes 

Mo/MФ monocytes/macropahges 

Mo-DCs monocyte-derrived dendritic cells 

mRNA messenger RNA 

MФ macrophages 

NK cells naural killer cells 

NPC neural progenitor cell 

OPC oligodendrocyte progenitor cell 

PBS Phosphate buffered saline 

PCA principal component analysis  

PCR polymerase chain reaction 

PFA paraformaldehyde  

REAP-seq RNA expression and protein sequencing assay  

RNA ribonucleic acid 

scRNA-seq single cell RNA sequencing 

SDS-PAGE sodium dodecyl sulphate–polyacrylamide gel electrophoresis 

TCGA The Cancer Genome Atlas  

tdT tandem dimer Tomato 

TME tumor microenviorment 

TME tumor microenvironment  

Tregs T regulatory lymphocytes 

tSNE t-Distributed Stochastic Neighbor Embedding  

UMAP Uniform Manifold Approximation and Projection  

UMI unique molecular identifier 

WHO world health organization 
  

 

II. Gene symbols 

Throughout the manuscript, gene symbols for mouse are given with first letter in upper-case 

(e.g. Tmem119) and for human with all letters in upper-case (e.g. TMEM119). If not specified 

otherwise, the gene symbols in the abbreviation list are given with use of the formatting for 

muse genes,  

Actb Actin beta 

Adam8 A disintegrin and metalloproteinase domain 8 

Apoe Apolipoprotein E 

Ascl1 Achaete-Scute Family BHLH transcription factor 1 

Atf3 Activating transcription factor 3 

Atrx Alpha-thalassemia/mental Retardation, X-linked 
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B2m Beta-2 microglobulin 

Birc5 Baculoviral IAP repeat-containing 5 

Bnip3 BCL2 Interacting Protein 3 

Bst2 Bone marrow stromal cell antigen 2 

Btla B and T lymphocyte associated  

C1qa Complement component 1, q subcomponent, alpha polypeptide 

C1qb Complement component 1, q subcomponent, beta polypeptide  

C1qc Complement component 1, q subcomponent, C chain 

C4b Complement component 4Bl 

Ccl12 Chemokine (C-C motif) ligand 12  

Ccl2 C-C Motif Chemokine Ligand 2 

Ccl3 C-C Motif Chemokine Ligand 3 

Ccl4 C-C Motif Chemokine Ligand 9 

Ccl9 C-C Motif Chemokine Ligand 5 

Ccna2 Cyclin A2 

Ccnb1 Cyclin B1 

Ccnb2 Cyclin B2  

Ccr2 Chemokine (C-C motif) receptor 2 

Ccr7 Chemokine (C-C motif) receptor 7  

Cd3d Cluster of Differentiation 3d 

Cd9 Cluster of Differentiation 9 

Cd24a Cluster of Differentiation 24a 

Cd274 Cluster of Differentiation 274 

Cd44 Cluster of Differentiation 44 

Cd52 Cluster of Differentiation 52 

Cd74 Cluster of Differentiation 44 

Cd80  Cluster of Differentiation 80 

Cd81 Cluster of Differentiation 74 

Cd83 Cluster of Differentiation 80 

Cd86 Cluster of Differentiation 86 

Cdk1 Cyclin-dependent kinase 1  

Cdk4 Cyclin-dependent kinase 4 

Cdkn2a Cyclin dependent kinase inhibitor 2A 

Chi3l1 Cyclin Dependent Kinase 4 

Cited2 Cyclin Dependent Kinase Inhibitor 2a  

Cks1b Chitinase 3 Like 1 

Crip1 Cysteine-rich protein 1  

Csf1r Colony stimulating factor 1 receptor 

Csf1 Colony stimulating factor 1  

Cst3 Cystatin C 

Ctsb Cathepsin B 

Ctsd Cathepsin D 

Ctss Cathepsin S 

Cx3cr2 Chemokine (C-X3-C motif) receptor 1 

Cxcl10 Chemokine (C-X-C motif) ligand 10  

Dab2 Cisabled 2, mitogen-responsive phosphoprotein  

Dcx Doublecortin  

Dll3 Delta like canonical Notch ligand 3 
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Dpp4 Dipeptidylpeptidase 4  

Egfr Epidermal growth factor receptor  

Egr1 Early growth response 1  

Emilin2 Elastin microfibril interfacer 2 

F13a1 Coagulation factor XIII, A1 subunit 

Fabp5 Fatty Acid Binding Protein 5 

Fcgr1 Fc receptor, IgG, high affinity I 

Fcrls Fc receptor-like S 

Fos FBJ osteosarcoma oncogene 

Fosb FBJ osteosarcoma oncogene B  

Gapdh Glyceraldehyde-3-Phosphate Dehydrogenase 

Gpnmb Glycoprotein Nmb 

Gpr34 G Protein-Coupled Receptor 34 

Gpr84 G Protein-Coupled Receptor 84 

H2-Aa Histocompatibility 2, class II antigen A, alpha 

H2-Ab1  Histocompatibility 2, class II antigen A, beta 1 

H2-Eb1  Histocompatibility 2, class II antigen E, beta 1 

H2-K1 Histocompatibility 2, K1, K region  

H2-Oa Histocompatibility 2, O region alpha locus  

Hexb Hexosaminidase B  

Hif1a Hypoxia Inducible Factor 1 Subunit Alpha 

Hilpda Hypoxia Inducible Lipid Droplet Associated 

Hmgb2 High mobility group box 2 

Hp Haptoglobin  

Idh1 Isocitrate dehydrogenase 1 

Idh2 Isocitrate dehydrogenase 2 

Ier2 Immediate early response 2 

Ifi205 Interferon activated gene 205 

Ifi27 Interferon alpha inducible protein 27 

Ifit2 Interferon induced protein with tetratricopeptide repeats 2 

Ifit3 Interferon induced protein with tetratricopeptide repeats 3 

Ifitm1 Interferon induced transmembrane protein 1 

Ifitm2 Interferon induced transmembrane protein 2 

Ifitm3 Interferon induced transmembrane protein 3 

Ifitm6 Interferon induced transmembrane protein 6 

Il18b Interleukin 1 beta 

Il1a Interleukin 1 alpha 

Il1b Interleukin 1 beta 

Il1rn Interleukin 1 receptor antagonist  

Il4I1 Interleukin 4 induced 1  

Irf7 Interferon regulatory factor 7 

Isg15 Interferon-stimulated protein, 15 KDa  

Itga4 Integrin alpha 4  

Itgax Integrin alpha X 

Jun Jun proto-oncogene  

Junb Jun B proto-oncogene  

Klf2 Kruppel-like factor 2  

Klf4 Kruppel-like factor 4  
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Klrb1C Killer cell lectin-like receptor subfamily B member 1C  

K-ras  Kirsten rat sarcoma virus 

Lgals3 Lectin, galactose binding, soluble 3  

Lglas3bp Lectin, galactose binding, soluble 3 binding protein 

Lpl Lipoprotein Lipase 

Ly6c3 Lymphocyte antigen 6 complex, locus C2  

Ly6i Lymphocyte antigen 6 complex, locus I  

Ly75 Lymphocyte antigen 75  

Mcm5 Minichromosome maintenance complex component 5 

Mertk MER proto-oncogene, tyrosine kinase 

Mgl2 Macrophage galactose N-acetyl-galactosamine specific lectin 2  

Mif Macrophage migration inhibitory factor 

Mrc1 Mannose receptor, C type 1  

Ms4A7 Membrane-spanning 4-domains, subfamily A, member 7  

Myc Myc proto-oncogene 

Ncam1 Neural cell adhesion molecule 1  

Ncr1 Natural cytotoxicity triggering receptor 1  

Nf1 Neurofibromatosis 1  

Nkx-2 NK2 Homeobox 2 

Olfml3 Olfactomedin-like 3 

Olig2 Oligodendrocyte Transcription Factor 2 

P2ry12 Purinergic Receptor P2Y, G-Protein Coupled, 12 

P2ry13 Purinergic Receptor P2Y, G-Protein Coupled, 13 

Pclaf PCNA clamp associated factor 

Pdcd1lg2 Programmed cell death 1 ligand 2 

Pdgfra Platelet derived growth factor receptor alpha  

Pf4 Platelet factor 4  

Pten Phosphatase And Tensin Homolog 

Ptprc Protein Tyrosine Phosphatase Receptor Type C 

Rsad2 Radical S-Adenosyl Methionine Domain Containing 2 

S100a11 S100 calcium binding protein A11  

S100a6 S100 calcium binding protein A6  

Sell Selectin, lymphocyte 

Selplg Selectin, platelet (p-selectin) ligand 

Sox SRY-box transcription factor 

Sparc Secreted Protein Acidic And Cysteine Rich 

Spp1 Secreted phosphoprotein 1 

Stat1 Signal transducer and activator of transcription 1 

Stat4 Signal transducer and activator of transcription 4 

Stmn1 Stathmin 1 

Tcf4 Transcription factor 4 

Tert Telomerase reverse transcriptase  

Tgfbi Transforming growth factor, beta induced  

Tgm2 Transglutaminase 2 

Tmem119 Transmembrane Protein 119 

Tnf Tumor necrosis factor 

Top2A Topoisomerase (DNA) II alpha  

TP54 Tumor Protein 53 (human) 
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p54 Tumor protein 53 (mouse) 

Trem2 Triggering receptor expressed on myeloid Cells 2 

Tuba1b Tubulin, alpha 1B 

Tubb4b Tubulin, beta 4B class IVB  

Tubb5 Tubulin, beta 5 class I  

Ube2c Ubiquitin-conjugating enzyme E2C  

Usp15 Ubiquitin specific peptidase 15  

Vcan Versican 

Vegfa Vascular endothelial growth factor A 

  

III. Protein symbols 

Throughout the manuscript, protein symbols for mouse are given with first letter in upper-case 

(e.g. Tmem119) and for human with all letters in upper-case (e.g. TMEM119). If not specified 

otherwise, the protein symbols in the abbreviation list are given with use of the formatting for 

mouse protein symbols. 

Cadm1 Cell adhesion molecule 1 

Ccl2 C-C motif chemokine ligand 2 

Ccl19 C-C motif chemokine ligand 19 

Ccl21 C-C motif chemokine ligand 21 

Ccl22 C-C motif chemokine ligand 22 

Ccr2 C-C motifchemokine receptor 2 

Ccr7 C-C motifchemokine receptor 7 

CD11b Cluster of Differentiation 11 b 

CD39 Cluster of Differentiation 39 

CD45 Cluster of Differentiation 45 

CD49d Cluster of Differentiation 209 

CD210 Cluster of Differentiation 49 d 

Csf1 Colony stimulating factor 1 

Csf1R Colony stimulating factor 1 receptor 

Ctla4 Cytotoxic T-Lymphocyte associated protein 4 

Cx3Cr1 CX3C chemokine receptor 1 

Cystatin C Cystatin C 

Gal-3 Galectin 3 

Gpmnb Transmembrane glycoprotein NMB 

Hla Human Leukocyte Antigen (human) 

Iba1 Ionized calcium binding adaptor molecule 1  

Ifi Interferon gamma inducible 

Ifitm Interferon induced transmembrane protein 

Il-1Β  Interleukin 1 beta 

Il-2 Interleukin 2  

Il-4 Interleukin 4 

Il-10 Interleukin 10 
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Il-27 Interleukin 27 

Il-35 Interleukin 35 

Inos inducible Nitric Oxide Synthase  

Irf7 Interferon regulatory factor 7 

Isg15 Interferon stimulated gene 15 

Lag-3 Lymphocyte-activation gene 3 

MHC Major histocompatobility complex 

p54 Tumor protein p53 

PD-2 Programmed Cell Death 1 

PD-L1 Programmed Cell Death Ligand 1 

PD-L2 Programmed Cell Death Ligand 2 

Pge2 Prostaglandin E2  

Ras Rat sarcoma virus 

Spp1 Osteopontin 

Stat1 Signal transducer and activator of transcription 1 

TGF-β Transforming growth factor beta 

Tigit T cell immunoreceptor with Ig and ITIM domains 

Tim-3 T-Cell Immunoglobulin And Mucin Domain-Containing Protein 3 

Tmem119 Transmembrane Protein 119 

TNF-α  Tumour necrosis factor alpha 

Trem2 Triggering receptor expressed on myeloid cells 2 

Usp18 Ubl carboxyl-terminal hydrolase 18 
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Supplementary figures 

  Supplementary Figure 1 | Ridge plots demonstrating separation of the CITE-seq samples with the 

HTO barcodes in replicate 2 (a) and replicate 3 (b). Replicate 1 is shown in the Figure 6.6 c. 
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Supplementary Figure 2 | Scatter plots demonstrating obtained percentage of reads aligned to the 

mitochondrial genes, compared to the number of total reads in the (a) scRNA-seq and (b) CITE-seq. 

Horizontal line indicates an adapted filtering threshold (cells having >5% - scRNA-seq, > 10% CITE-seq 

mitochondrial reads were excluded from the analysis.   
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Supplementary Figure 3 | Feature plots demonstrating expression of top highly expressed genes of 

MG, Mo/MФ and BAMs groups. 
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Supplementary Figure 4 | UMAP plot demonstrating clusters of the re-clustered groups (MG, Mo/MФ and 

BAMs) for combined conditions. 

Supplementary Figure 5 | Immunohistochemical staining for microglia (Tmem119+) and Mo/MΦ (Gal-3+) 

shows the localization of specific immune cells within the tumor and its surroundings in male animal (for female 

see Figure 6.9e); a dashed line marks the tumor edge; scale – 100 μm. 
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Supplementary Figure 6 | Heatmap of the top expressed genes in cell cluster from the major identified cell 

populations in the CITE-seq analysis. 
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  Supplementary Figure 7 | Feature plots demonstrating the distribution of expression level of each gene 

contained in the transcriptional microglia scores in Figure 6.15c, across all the CD11b+ cells included in the 

CITE-seq analysis. 
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a 

b 

Supplementary Figure 8 | Feature plots demonstrating the distribution of expression level of genes belonging 

to “hypoxia” signature reported by Antunes et al . 2021 in (a) our CITE-seq a data set (b) scRNA-seq from 

murine glioma TAM data set from Antunes et al. (2021). The feature plots for the Antunes et al. (2021) data set 

were produced using the interactive web page provided by the authors https://www.brainimmuneatlas.org/ .  

 

 

https://www.brainimmuneatlas.org/
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Supplementary Figure 9 | Feature plots depicting expression level of all proteins from the CITE-seq protein 

panel along with the expression level of the encoding genes. For Gr-1 only protein expression is shown, as the 

gene Ly6g gene was not found to be expressed in the CITE-seq dataset.  
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Supplementary material 

Supplementary Table 1 | List of the literature-based markers used to create an immune marker panel for 

characterization of cell identity of clusters obtained in scRNA-seq and CITE-seq analysis.  

Gene Target group Ref.  Gene Target group Ref. 

Ptprc hematopoietic cells 138  Fpr3 macrophages 39 

Itgam myeloid cells 138  Kynu macrophages 39 

Cd14 myelomonocytic cells 138  S100a11 macrophages 39 

Tmem119 microglia  61,185,186  S100a6 macrophages 39 

Cx3cr1 microglia  185  Tgm2 GAMs 50 

P2ry12 microglia  61,185  Gpnmb GAMs 50 

P2ry13 microglia  61,185  Emilin2 macrophages in high-grade glioma  187 

Gpr34 microglia  61,185  Gda macrophages in high-grade glioma  187 

Olfml3 microglia  185  Hp macrophages in high-grade glioma 187 

Selplg microglia  185,186  Sell macrophages in high-grade glioma  187 

Sparc microglia  185  
Cd163 Border Associated Macrophages 188 

Fcrls microglia  61,185  Mrc1 Border Associated Macrophages 188,189 

Siglech microglia  185  Lyve1 Border Associated Macrophages 188 

Slc2a5 microglia 185,186  Siglec1 Border Associated Macrophages 188 

Pf4 microglia progenitors 133  Ly6c1 monocytes 190 

F13a1 microglia progenitors 133  Ly6c2 monocytes 190 

Lyz2 microglia progenitors 133  Ccr2 classical monocytes 190 

Ifit3 microglia progenitors 133  Spn  non-classical monocytes 190 

Mcm5 early microglia 133  Ace non-classical monocytes 77 

Dab2 early microglia 133  Ear2 non-classical monocytes 77 

Cxcr2 pre-microglia 133  Ly6g Granulocytes 191 

Scd2 pre-microglia 133  Cd24a granulocytes/ dendritic cells 191 

Psat1 pre-microglia 133  Itgax dendritic cells 192 

Csf1 pre-microglia 133  Bst2 plasmocytoid dendritic cells 192 

Crybb1 pre-microglia 133  Ncam1 NK cells 193 

Fcrls pre-microglia 133  Klrb1c NK cells 193 

Selplg adult microglia 133  Klrk1 NK cells 193 

Mafb adult microglia 133  Ncr1 NK cells 193 

Pmepa1 adult microglia 133  Cd2 T-cells, NK cells 138 

Cd14 adult microglia 133  Cd3d T cells 138 

Lpl disease associated microglia 157  Cd3e T cells 138 

Cst7 disease associated microglia 133,157  Cd3g T cells 138 

Itga4 macrophages 39,59  Cd4 helper T cell 138 

Tgfbi macrophages 38,39  Cd8a cytotoxic T cells 138 

Ifitm2 macrophages 38,39  Cd8b1 cytotoxic T cells 138 

Ifitm3 macrophages 38  Cd19 B-cells 138 

Tagln2 macrophages 38  Ms4a1 B-cells 138 

F13a1 macrophages 38  Sdc1 B-cells 138 
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Supplementary Table 2 | List of up to top 30 differentially expressed genes in the MG clusters presented on Figure 

6.7. Each page corresponds to an individual condition (male control, male tumor, female control, female tumor).  

 

male control 

condition cluster Gene.name avg_logFC  condition cluster Gene.name avg_logFC 

m_ctrl MG1 P2ry12 0.29  m_ctrl MG3 Zscan26 0.69 

m_ctrl MG1 Cst3 0.29  m_ctrl MG3 Skil 0.58 

m_ctrl MG1 Crybb1 0.27  m_ctrl MG3 Abhd2 0.52 

m_ctrl MG1 Pros1 0.26  m_ctrl MG3 Pdcd4 0.51 

m_ctrl MG2 Fos 1.54  m_ctrl MG3 Dpysl2 0.49 

m_ctrl MG2 Egr1 1.53  m_ctrl MG3 Cdk6 0.45 

m_ctrl MG2 Jun 1.52  m_ctrl MG3 Tubb5 0.43 

m_ctrl MG2 Ier2 1.32  m_ctrl MG3 Dusp3 0.41 

m_ctrl MG2 Dusp1 1.32  m_ctrl MG3 Kdm6b 0.37 

m_ctrl MG2 Jund 1.28  m_ctrl MG3 Gm2a 0.36 

m_ctrl MG2 Btg2 1.28  m_ctrl MG3 Klf13 0.35 

m_ctrl MG2 Klf2 1.21  m_ctrl MG3 Supt16 0.34 

m_ctrl MG2 Atf3 1.20  m_ctrl MG3 Prune2 0.33 

m_ctrl MG2 Junb 1.15  m_ctrl MG3 Nav3 0.28 

m_ctrl MG2 Socs3 1.05  m_ctrl MG3 Gatad1 0.27 

m_ctrl MG2 Zfp36 1.05  m_ctrl pre-MG Ccl4 2.62 

m_ctrl MG2 Nfkbia 1.04  m_ctrl pre-MG Id2 2.06 

m_ctrl MG2 Ccl4 1.02  m_ctrl pre-MG Ccl3 1.98 

m_ctrl MG2 Ier5 1.00  m_ctrl pre-MG Lgals3 1.78 

m_ctrl MG2 Cited2 0.94  m_ctrl pre-MG Cd83 1.60 

m_ctrl MG2 Rhob 0.88  m_ctrl pre-MG Lpl 1.49 

m_ctrl MG2 Ubc 0.85  m_ctrl pre-MG Cd63 1.45 

m_ctrl MG2 Ccl3 0.84  m_ctrl pre-MG C5ar1 1.43 

m_ctrl MG2 Ppp1r15a 0.72  m_ctrl pre-MG Cstb 1.23 

m_ctrl MG2 Gm26532 0.72  m_ctrl pre-MG Csf1 1.17 

m_ctrl MG2 Klf6 0.69  m_ctrl pre-MG Mt1 1.17 

m_ctrl MG2 Tsc22d3 0.68  m_ctrl pre-MG Cxcl16 1.15 

m_ctrl MG2 Dnajb1 0.67  m_ctrl pre-MG Gpr84 1.11 

m_ctrl MG2 Gadd45g 0.63  m_ctrl pre-MG Mif 1.09 

m_ctrl MG2 Rgs1 0.62  m_ctrl pre-MG Plaur 1.07 

m_ctrl MG2 Fosb 0.60  m_ctrl pre-MG Cd9 1.07 

m_ctrl MG2 Sgk1 0.54  m_ctrl pre-MG Tlr2 1.06 

m_ctrl MG2 Tagap 0.54  m_ctrl pre-MG Slc15a3 1.04 

m_ctrl MG2 Ptma 0.45  m_ctrl pre-MG Tnf 1.02 

m_ctrl MG3 Bmp2k 1.23  m_ctrl pre-MG Cadm1 1.02 

m_ctrl MG3 Bhlhe41 1.22  m_ctrl pre-MG Plek 1.00 

m_ctrl MG3 Slc39a1 1.09  m_ctrl pre-MG Ctsb 0.98 

m_ctrl MG3 Zfp691 0.99  m_ctrl pre-MG Spp1 0.96 

m_ctrl MG3 Notch2 0.96  m_ctrl pre-MG Ninj1 0.96 

m_ctrl MG3 Ncoa3 0.89  m_ctrl pre-MG Thbs1 0.96 

m_ctrl MG3 Actb 0.83  m_ctrl pre-MG Gadd45b 0.94 

m_ctrl MG3 Ptafr 0.80  m_ctrl pre-MG Pkm 0.93 

m_ctrl MG3 Nfia 0.78  m_ctrl pre-MG Sdc4 0.92 

m_ctrl MG3 Gm32036 0.72  m_ctrl pre-MG Cst7 0.91 

m_ctrl MG3 C5ar2 0.71  m_ctrl pre-MG Nfkbia 0.90 
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male tumor 

condition cluster Gene.name avg_logFC  condition cluster Gene.name avg_logFC 

m_tumor MG1 P2ry12 1.18  m_tumor MG2 Jun 2.00 

m_tumor MG1 Fcrls 1.18  m_tumor MG2 Egr1 1.84 

m_tumor MG1 Gpr34 1.08  m_tumor MG2 Ier2 1.61 

m_tumor MG1 Ecscr 1.04  m_tumor MG2 Klf2 1.61 

m_tumor MG1 Ltc4s 0.97  m_tumor MG2 Jund 1.52 

m_tumor MG1 Sox4 0.83  m_tumor MG2 Rhob 1.34 

m_tumor MG1 Slc2a5 0.81  m_tumor MG2 Btg2 1.33 

m_tumor MG1 Tmem119 0.79  m_tumor MG2 Ier5 1.28 

m_tumor MG1 Olfml3 0.78  m_tumor MG2 Fos 1.26 

m_tumor MG1 Sparc 0.77  m_tumor MG2 Dusp1 1.15 

m_tumor MG1 Pmp22 0.70  m_tumor MG2 Atf3 1.09 

m_tumor MG1 Syngr1 0.68  m_tumor MG2 Junb 1.07 

m_tumor MG1 Ctsd 0.65  m_tumor MG2 Dnajb1 1.00 

m_tumor MG1 Serpine2 0.62  m_tumor MG2 Zfp36 0.96 

m_tumor MG1 Ldhb 0.62  m_tumor MG2 Nfkbia 0.93 

m_tumor MG1 Fscn1 0.59  m_tumor MG2 Cited2 0.90 

m_tumor MG1 Lrba 0.56  m_tumor MG2 Ccl3 0.90 

m_tumor MG1 Cd81 0.56  m_tumor MG2 Tsc22d3 0.89 

m_tumor MG1 Ctsl 0.56  m_tumor MG2 Ccl4 0.89 

m_tumor MG1 Ifi27 0.54  m_tumor MG2 Ppp1r15a 0.80 

m_tumor MG1 Pros1 0.50  m_tumor MG2 Sgk1 0.75 

m_tumor MG1 Cd9 0.50  m_tumor MG2 Gm26532 0.71 

m_tumor MG1 Crybb1 0.49  m_tumor MG2 Klf6 0.67 

m_tumor MG1 Bmp2k 0.47  m_tumor MG2 Il1a 0.65 

m_tumor MG1 Tmem37 0.45  m_tumor MG2 Fosb 0.60 

m_tumor MG1 Lag3 0.45  m_tumor MG2 Gadd45g 0.59 

m_tumor MG1 Thrsp 0.44  m_tumor MG2 Icam1 0.56 

m_tumor MG1 Tmem176b 0.44  m_tumor MG2 Tagap 0.50 

m_tumor MG1 Upk1b 0.42  m_tumor MG2 Socs3 0.49 

m_tumor MG1 Cadm1 0.42  m_tumor MG2 Nfkbiz 0.49 

m_tumor MG7 Ccl12 1.50  m_tumor MG8 Stmn1 2.40 

m_tumor MG7 H2-Oa 0.91  m_tumor MG8 Pclaf 1.62 

m_tumor MG7 Cst7 0.79  m_tumor MG8 Hmgb2 1.58 

m_tumor MG7 Lgals3bp 0.77  m_tumor MG8 Top2a 1.55 

m_tumor MG7 Gm4951 0.76  m_tumor MG8 Birc5 1.48 

m_tumor MG7 Cd81 0.67  m_tumor MG8 Hist1h2ap 1.44 

m_tumor MG7 Ly86 0.67  m_tumor MG8 Tubb5 1.39 

m_tumor MG7 Lag3 0.64  m_tumor MG8 Ube2c 1.34 

m_tumor MG7 Crybb1 0.64  m_tumor MG8 Rrm2 1.32 

m_tumor MG7 C4b 0.59  m_tumor MG8 Hmgn2 1.31 

m_tumor MG7 Cd180 0.57  m_tumor MG8 Tuba1b 1.28 

m_tumor MG7 Cd9 0.56  m_tumor MG8 Cks1b 1.23 

m_tumor MG7 Lap3 0.52  m_tumor MG8 H2afz 1.23 

m_tumor MG7 Serpine2 0.51  m_tumor MG8 H2afx 1.21 

m_tumor MG7 Timp2 0.50  m_tumor MG8 Pbk 1.18 

m_tumor MG7 Ctsb 0.47  m_tumor MG8 Ube2s 1.16 

m_tumor MG7 Spp1 0.47  m_tumor MG8 Cdk1 1.15 

m_tumor MG7 Ctsd 0.46  m_tumor MG8 Smc2 1.15 

m_tumor MG7 Ldhb 0.43  m_tumor MG8 Nusap1 1.07 

m_tumor MG7 Ctsl 0.43  m_tumor MG8 Smc4 1.07 

m_tumor MG7 Hcar2 0.41  m_tumor MG8 Ccl12 1.06 

m_tumor MG7 Olfml3 0.41  m_tumor MG8 Ngp 1.05 

m_tumor MG7 Tor3a 0.39  m_tumor MG8 H2afv 1.04 

m_tumor MG7 Tmem119 0.39  m_tumor MG8 Tk1 0.97 

m_tumor MG7 Sparc 0.38  m_tumor MG8 Cst7 0.97 

m_tumor MG7 Gpr84 0.36  m_tumor MG8 Ccnb1 0.95 

m_tumor MG7 Cryba4 0.36  m_tumor MG8 Spc24 0.95 

m_tumor MG7 Ccl3 0.36  m_tumor MG8 Cenpa 0.93 

m_tumor MG7 Bhlhe41 0.35  m_tumor MG8 Cdca8 0.93 

m_tumor MG7 Sdf2l1 0.35  m_tumor MG8 Cks2 0.93 
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female control 

condition cluster Gene.name avg_logFC  condition cluster Gene.name avg_logFC 

f_ctrl MG1 Crybb1 0.26  f_ctrl MG3 Rbm15 0.60 

f_ctrl MG1 Cst3 0.26  f_ctrl MG3 Cdk6 0.60 

f_ctrl MG2 Jun 1.75  f_ctrl MG3 Clasp2 0.49 

f_ctrl MG2 Ier2 1.73  f_ctrl MG3 Pdcd4 0.48 

f_ctrl MG2 Klf2 1.62  f_ctrl MG3 Dusp3 0.47 

f_ctrl MG2 Egr1 1.60  f_ctrl MG3 Pan3 0.46 

f_ctrl MG2 Fos 1.57  f_ctrl MG3 Tubb5 0.43 

f_ctrl MG2 Dusp1 1.56  f_ctrl MG3 Rpgrip1 0.42 

f_ctrl MG2 Btg2 1.55  f_ctrl MG3 Kdm6b 0.37 

f_ctrl MG2 Junb 1.47  f_ctrl MG3 Gm2a 0.36 

f_ctrl MG2 Jund 1.44  f_ctrl MG5 Plp1 2.38 

f_ctrl MG2 Nfkbia 1.26  f_ctrl MG5 Ly6a 1.83 

f_ctrl MG2 Atf3 1.18  f_ctrl MG5 Pltp 1.46 

f_ctrl MG2 Ier5 1.15  f_ctrl MG5 Mbp 1.12 

f_ctrl MG2 Zfp36 1.04  f_ctrl MG5 Slc2a1 1.06 

f_ctrl MG2 Cited2 0.91  f_ctrl MG5 Hspb1 0.96 

f_ctrl MG2 Klf6 0.89  f_ctrl MG5 Slco1c1 0.91 

f_ctrl MG2 Ubc 0.88  f_ctrl MG5 Gsn 0.85 

f_ctrl MG2 Rhob 0.87  f_ctrl MG5 Cdkn1a 0.80 

f_ctrl MG2 Socs3 0.86  f_ctrl MG5 Zbtb20 0.79 

f_ctrl MG2 Dnajb1 0.85  f_ctrl MG5 Calm1 0.77 

f_ctrl MG2 Tsc22d3 0.84  f_ctrl MG5 Ramp2 0.77 

f_ctrl MG2 Gm26532 0.82  f_ctrl MG5 App 0.76 

f_ctrl MG2 Ppp1r15a 0.79  f_ctrl MG5 Stmn1 0.76 

f_ctrl MG2 Gadd45g 0.79  f_ctrl MG5 Rbms1 0.73 

f_ctrl MG2 Ccl4 0.70  f_ctrl MG5 Ablim1 0.73 

f_ctrl MG2 H3f3b 0.68  f_ctrl MG5 Sgms1 0.72 

f_ctrl MG2 Ptma 0.63  f_ctrl MG5 Cnp 0.69 

f_ctrl MG2 Sertad1 0.62  f_ctrl MG5 Selenow 0.61 

f_ctrl MG2 Clk1 0.56  f_ctrl MG5 Selenom 0.60 

f_ctrl MG2 Sgk1 0.55  f_ctrl MG5 Ywhaq 0.60 

f_ctrl MG2 Tob2 0.54  f_ctrl MG5 Fez1 0.58 

f_ctrl MG3 Bmp2k 1.31  f_ctrl MG5 Crip1 0.56 

f_ctrl MG3 Bhlhe41 1.17  f_ctrl MG5 Kank3 0.55 

f_ctrl MG3 Slc39a1 1.13  f_ctrl MG5 Gsta4 0.55 

f_ctrl MG3 Ncoa3 1.04  f_ctrl MG5 Pecam1 0.54 

f_ctrl MG3 Notch2 0.94  f_ctrl MG5 Cav2 0.53 

f_ctrl MG3 Zfp691 0.94  f_ctrl MG5 Nsrp1 0.48 

f_ctrl MG3 Actb 0.86  f_ctrl MG5 Twistnb 0.47 

f_ctrl MG3 Zscan26 0.73  f_ctrl MG5 Bbc3 0.46 

f_ctrl MG3 Dpysl2 0.73  f_ctrl MG6 Cd63 1.13 

f_ctrl MG3 Ptafr 0.72  f_ctrl MG6 Gpr84 0.89 

f_ctrl MG3 Itpripl1 0.71  f_ctrl MG6 Ms4a6b 0.79 

f_ctrl MG3 Nfia 0.71  f_ctrl MG6 Tmem119 0.64 

f_ctrl MG3 Cbx3 0.69  f_ctrl MG6 Cd9 0.64 

f_ctrl MG3 Lrrc8a 0.69  f_ctrl MG6 mt-Nd1 0.63 

f_ctrl MG3 Kdelr2 0.68  f_ctrl MG6 Csf2ra 0.58 

f_ctrl MG3 Gm32036 0.68  f_ctrl MG6 Cd79b 0.58 

f_ctrl MG3 Tmf1 0.67  f_ctrl MG6 Lrrc8a 0.55 

f_ctrl MG3 C5ar2 0.65  f_ctrl MG6 Ctsd 0.54 

f_ctrl MG3 Skil 0.65  f_ctrl MG6 P2ry12 0.53 

f_ctrl MG3 Gnb1 0.64  f_ctrl MG6 mt-Co3 0.53 
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condition cluster Gene.name avg_logFC 

f_ctrl MG6 Lilra5 0.47 

f_ctrl MG6 Acvrl1 0.44 

f_ctrl MG6 Hist1h2be 0.44 

f_ctrl MG6 Lat2 0.43 

f_ctrl MG6 Lgals3bp 0.41 

f_ctrl MG6 5031425E22Rik 0.40 

f_ctrl MG6 Usp15 0.39 

f_ctrl MG6 Nucb2 0.39 

f_ctrl MG6 Msmo1 0.38 

f_ctrl MG6 Gbp7 0.38 

f_ctrl MG6 Kcnn4 0.38 

f_ctrl MG6 Gcc2 0.37 

f_ctrl MG6 mt-Atp6 0.37 

f_ctrl MG6 Nfil3 0.37 

f_ctrl MG6 Pan3 0.37 

f_ctrl MG6 Rnase6 0.35 

f_ctrl MG6 Cst3 0.34 

f_ctrl MG6 AC160336.1 0.33 

f_ctrl pre-MG Ccl12 2.33 

f_ctrl pre-MG Ifit3 1.99 

f_ctrl pre-MG Isg15 1.61 

f_ctrl pre-MG Ccl4 1.55 

f_ctrl pre-MG Lpl 1.53 

f_ctrl pre-MG Ifit3b 1.48 

f_ctrl pre-MG Ifitm3 1.42 

f_ctrl pre-MG Rtp4 1.35 

f_ctrl pre-MG Ccl3 1.32 

f_ctrl pre-MG Lgals3 1.15 

f_ctrl pre-MG Ifi27l2a 1.15 

f_ctrl pre-MG Bst2 1.10 

f_ctrl pre-MG Cd63 1.09 

f_ctrl pre-MG Ifi204 1.08 

f_ctrl pre-MG Usp18 1.06 

f_ctrl pre-MG Phf11d 1.01 

f_ctrl pre-MG Irf7 0.99 

f_ctrl pre-MG Ifit1 0.98 

f_ctrl pre-MG Ifi206 0.92 

f_ctrl pre-MG Slfn2 0.91 

f_ctrl pre-MG Pkm 0.85 

f_ctrl pre-MG Phf11b 0.85 

f_ctrl pre-MG Ifit2 0.83 

f_ctrl pre-MG Spp1 0.81 

f_ctrl pre-MG Trim30a 0.80 

f_ctrl pre-MG Tpi1 0.79 

f_ctrl pre-MG Cd52 0.78 

f_ctrl pre-MG Lgals3bp 0.76 

f_ctrl pre-MG Id2 0.76 

f_ctrl pre-MG Cst7 0.75 
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female tumor 

condition cluster Gene.name avg_logFC  condition cluster Gene.name avg_logFC 

f_tumor MG1 P2ry12 1.18  f_tumor MG7 Ccl12 1.36 

f_tumor MG1 Fcrls 1.01  f_tumor MG7 Gm4951 0.72 

f_tumor MG1 Tmem119 0.79  f_tumor MG7 Lgals3bp 0.65 

f_tumor MG1 Sox4 0.77  f_tumor MG7 Lag3 0.63 

f_tumor MG1 Bmp2k 0.66  f_tumor MG7 Cd81 0.61 

f_tumor MG1 Bhlhe41 0.65  f_tumor MG7 Ly86 0.56 

f_tumor MG1 Pros1 0.65  f_tumor MG7 Crybb1 0.55 

f_tumor MG1 Syngr1 0.60  f_tumor MG7 H2-Oa 0.49 

f_tumor MG1 Ctsd 0.60  f_tumor MG7 Cd180 0.47 

f_tumor MG1 Cd81 0.58  f_tumor MG7 Serpine2 0.45 

f_tumor MG1 Fscn1 0.56  f_tumor MG7 C4b 0.44 

f_tumor MG1 Crybb1 0.53  f_tumor MG7 Timp2 0.41 

f_tumor MG1 Upk1b 0.49  f_tumor MG7 Tmem119 0.41 

f_tumor MG1 Ifi27 0.48  f_tumor MG7 Ctsl 0.40 

f_tumor MG1 Sall1 0.48  f_tumor MG7 Tor3a 0.40 

f_tumor MG1 Serpine2 0.46  f_tumor MG7 Cd9 0.39 

f_tumor MG1 Serpinf1 0.45  f_tumor MG7 Sdf2l1 0.39 

f_tumor MG1 Cd9 0.44  f_tumor MG7 B2m 0.38 

f_tumor MG1 Adrb2 0.42  f_tumor MG7 Ctsd 0.36 

f_tumor MG1 Rogdi 0.41  f_tumor MG7 Cst7 0.36 

f_tumor MG1 Nfia 0.41  f_tumor MG7 Bst2 0.36 

f_tumor MG1 Cadm1 0.40  f_tumor MG7 Lap3 0.34 

f_tumor MG1 Ctsl 0.37  f_tumor MG7 Spint1 0.33 

f_tumor MG1 Slc1a3 0.37  f_tumor MG7 H2-D1 0.33 

f_tumor MG1 C5ar2 0.35  f_tumor MG7 Gpr84 0.33 

f_tumor MG1 Zfp691 0.34  f_tumor MG7 H2-DMa 0.32 

f_tumor MG1 Gusb 0.31  f_tumor MG7 Ctsz 0.30 

f_tumor MG1 Cd34 0.31  f_tumor MG7 H2-K1 0.29 

f_tumor MG1 Tmem176a 0.30  f_tumor MG7 Cd34 0.29 

f_tumor MG1 Lag3 0.30  f_tumor MG7 Hebp1 0.27 

f_tumor MG2 Jun 1.98      
f_tumor MG2 Egr1 1.59      
f_tumor MG2 Klf2 1.55      
f_tumor MG2 Jund 1.43      
f_tumor MG2 Ier2 1.28      
f_tumor MG2 Btg2 1.19      
f_tumor MG2 Rhob 1.14      
f_tumor MG2 Ccl4 1.13      
f_tumor MG2 Fos 1.12      
f_tumor MG2 Dusp1 1.10      
f_tumor MG2 Junb 0.98      
f_tumor MG2 Cited2 0.97      
f_tumor MG2 Ccl3 0.95      
f_tumor MG2 Atf3 0.95      
f_tumor MG2 Nfkbia 0.95      
f_tumor MG2 Dnajb1 0.83      
f_tumor MG2 Zfp36 0.80      
f_tumor MG2 Klf6 0.76      
f_tumor MG2 Cst7 0.74      
f_tumor MG2 Tsc22d3 0.69      
f_tumor MG2 Ppp1r15a 0.68      
f_tumor MG2 Il1a 0.66      
f_tumor MG2 Sgk1 0.59      
f_tumor MG2 Gm26532 0.55      
f_tumor MG2 Ctsl 0.54      
f_tumor MG2 Cd9 0.50      
f_tumor MG2 Gadd45g 0.50      
f_tumor MG2 Icam1 0.48      
f_tumor MG2 Ccl12 0.46      
f_tumor MG2 Ctsd 0.46      


