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Summary 

The tumor microenvironment (TME) plays a critical role in glioblastoma 

(GBM) progression and therapy resistance. The immune composition of the TME 

and the interactions among immune cells in genetically engineered glioma 

models remain poorly characterized. Using single-cell RNA sequencing (scRNA-

seq) with a panel of antibodies (CITE-seq) and Visium Spatial Transcriptomics, I 

performed a comprehensive analysis of the immune cell composition in GL261 

gliomas, focusing on functional phenotypes of myeloid cells, T cells, and NK cells, 

in order to create the best to date description of TME in the most popular high-

grade glioma (HGG) model. Building on prior work, I redefined macrophages into 

four functionally distinct states, demonstrating that higher cluster counts in earlier 

studies arise from over-clustering and reduce translational relevance, while 

expanding phenotypic characterization to include metabolic and spatial 

dynamics. 

In the lymphoid compartment, I identified all major T cell populations and 

determined their distribution and ratios, consistent with the GL261 glioma 

moderate immunogenicity. NK cells exhibited a glioma-associated phenotype 

with reduced cytotoxicity and increased expression of tumor-promoting factors. 

Ligand-receptor analyses highlighted the immunosuppressive interactions 

between macrophages and lymphoid cells, further emphasizing the role of 

myeloid cells in T cell suppression. 

To study the effects of the IDH1 R132H mutation on the immune TME, I 

employed CITE-seq and Spatial Transcriptomics in genetically defined mouse 

models. 2-hydroxyglutarate (2-HG), metabolite produced by cells with IDH1 

mutation, suppressed T cell proliferation, metabolic activity, and oxidative 

phosphorylation while impairing myeloid antigen presentation and T cell 

recruitment. These findings underscore the complex interplay between glioma-

associated factors and the immune microenvironment, offering new insights into 

tumor progression and potential therapeutic targets. 

This study advances our understanding of glioma TME heterogeneity, 

particularly in GL261 and IDH1-mutant HGG models, providing a robust 

framework for translational research and therapeutic development. 
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Streszczenie 

 Mikrośrodowisko guza (tumor microenvironment, TME) odgrywa 

kluczową rolę w progresji glejaka wielopostaciowego (GBM) i oporności na 

terapie. Skład komórek odpornościowych w TME i interakcje między różnymi 

komórkami odpornościowymi w genetycznie zdefiniowanych modelach glejaka 

nie zostały określone. Wykorzystując sekwencjonowanie RNA na poziomie 

pojedynczych komórek (scRNA-seq) z panelem przeciwciał (CITE-seq) oraz 

transkryptomikę przestrzenną Visium (10X Genomics), przeprowadziłem 

kompleksową analizę komórek odpornościowych w mikrośrodowisku glejaka 

GL261, skupiając się na charakterystyce komórek mieloidalnych, limfocytów T 

oraz komórek NK, w celu stworzenia najbardziej dokładnego dotychczas opisu 

TME w najbardziej popularnym modelu glejaka o wysokiej złośliwości (high grade 

glioma, HGG). Bazując na wynikach wcześniejszych badań, udoskonaliłem 

klasyfikację funkcjonalnych podtypów makrofagów, wyróżniając cztery odrębne 

stany, jednocześnie rozszerzając charakterystykę fenotypową o dynamikę 

metaboliczną i przestrzenną. Wykazałem, że większa liczba podtypów 

proponowana w innych pracach wynika z nadmiernej klasteryzacji i ogranicza 

przydatność translacyjną. 

W obrębie komórek limfoidalnych zidentyfikowałem główne populacje 

limfocytów T, określając ich rozkład i proporcje, co potwierdziło umiarkowaną 

immunogenność komórek glejaka GL261. Komórki NK wykazywały fenotyp 

związany z glejakiem, charakteryzujący się obniżoną cytotoksycznością i 

zwiększoną ekspresją czynników promujących rozwój guza. Analiza interakcji 

ligand-receptor uwydatniła immunosupresyjną rolę makrofagów w supresji 

limfocytów T. 

Aby zbadać wpływ często występującej w HGG mutacji IDH1 R132H na 

mikrośrodowisko, przeprowadziłem analizę danych CITE-seq z komórek CD45+ 

sortowanych z guzów i z transkryptomiki przestrzennej Visium w modelach 

złośliwych glejaków u myszy. 2-hydroksyglutaran (2-HG), metabolit 

produkowany przez komórki z mutacją IDH1, redukował proliferację limfocytów 

T, aktywność metaboliczną i fosforylację oksydacyjną, jednocześnie 

upośledzając prezentację antygenów przez komórki mieloidalne oraz rekrutację 

limfocytów T. Uzyskane wyniki podkreślają złożone interakcje czynników 
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produkowanych przez komórki glejaka z komórkami odpornościowymi w 

mikrośrodowisku guza, dostarczając nowych informacji o mechanizmach 

progresji guza, deficytach obrony przeciwnowotworowej i potencjalnych celach 

terapeutycznych. 

Wyniki prezentowanych badań poszerzają wiedzę na temat dynamiki 

odpowiedzi przeciwnowotworowej w TME w glejakach GL261 i glejakach ze 

zmutowanym IDH1, dostarczając solidnych podstaw do badań translacyjnych i 

rozwoju nowych terapii. 
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1. Introduction 

1.1. Glioma etiology and pathology 

Gliomas encompass a spectrum of primary, benign and malignant tumors 

that arise from neural stem or progenitors cells within the central nervous system 

(CNS) [1]. High-grade gliomas (HGGs) represent the most prevalent and 

aggressive tumor type, accounting for over 80% of CNS tumor cases. Low-grade 

gliomas (LGGs) typically affect children or younger adults, and patients typically 

have a median survival of approximately seven years, while patients diagnosed 

with HGGs generally face a grim prognosis with a mean survival 15 months [1]. 

HGGs are known for their resistance to conventional treatments, as 

classical therapy encompassing surgical resection followed by radiation and 

chemotherapy often fails to yield effective management, rendering the disease 

virtually incurable. The DNA alkylating agent temozolomide (TMZ) has been 

shown to extend median survival for GBM patients by an average of only 2.5 

months and is right now a part of standard care. Despite advancements in 

understanding tumor-specific mechanisms and vulnerabilities that have led to 

targeted therapies, patient survival rates have improved only marginally over 

recent decades [2][3]. 

Notably, HGGs are often classified as "immunologically cold" tumors due 

to significant immunosuppression that affects disease progression and the 

efficacy of immunotherapies. Many experimental and clinical studies extensively 

documented that microglia and macrophages infiltrating gliomas, which are the 

predominant immune cells within HGG microenvironment, play a prominent role 

in tumor invasion while fostering an immunosuppressive environment [4][5]. The 

immunosuppressive microenvironment, low infiltration of effector antitumor cells 

and aberrant tumor vasculature are major obstacles impeding the efficacy of 

immunotherapy in HGGs [6]. 

1.2. Glioma classification 

Originally, the glioma classification was based on histopathological 

features and did not fully reflected the heterogeneity observed within these 

tumors, particularly in WHO (World Health Organization) grade 4 glioblastoma 
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(GBM). The 2016 CNS WHO classification presented major types: the diffuse 

gliomas, medulloblastomas and other embryonal tumors, and implemented new 

entities defined by histology and molecular features, such as GBM IDH-wildtype 

and GBM IDH-mutant along with other entities [7]. An 2021 update (known as 

CNS5) was drafted on the basis of recommendations from the Consortium to 

Inform Molecular and Practical Approaches to CNS Tumor Taxonomy 

(cIMPACT-NOW) and emphasized the importance of genetic and molecular 

changes in the diagnosis of the CNS tumors. Multiple newly recognized tumor 

types were detailed in CNS5. Adult gliomas are now classified into three tumor 

types according to the IDH and 1p/19q status. Diffuse gliomas with morphological 

features of glioblastoma and IDH mutation are classified as astrocytoma, IDH-

mutant, CNS WHO grade 4. Diffuse    gliomas with the wild type IDH but with 

molecular features of glioblastoma are classified as glioblastoma, IDH-wildtype. 

Pediatric-type gliomas are classified separately from adult-type gliomas [8]. 

GBMs were subjected to many studies defining their genomic, epigenetic 

and transcriptional alterations [9] [10] [11]. Moreover, studies employing multiple 

sampling techniques and single-cell RNA sequencing (scRNA-seq) have 

demonstrated that GBM are composed of a mixture of neoplastic cells exhibiting 

various molecular subtypes [12].  

Specifically, three primary GBM transcriptional profiles have been 

identified: classical, proneural, and mesenchymal based on bulk RNAseq [10]. 

The classical (CL) subtype is associated with amplification of the EGFR gene 

(coding for Epithelial Growth Factor Receptor); this subtype frequently co-occurs 

with CDKN2A deletion (coding for Cyclin dependent kinase inhibitor 2a) and 

typically lacks TP53 mutations. The proneural (PN) subtype is characterized by 

a higher rate of PDGFRA amplification (encoding Platelet derived growth factor 

receptor alpha) and an increased frequency of TP53 mutations. This subtype is 

associated with enhanced transcription of genes involved in oligodendrocyte and 

proneural development. The mesenchymal (MES) subtype often involves 

deletion or mutation of the NF1 gene (encoding Neurofibromatosis 1) and 

frequently co-occurs with PTEN mutations (encoding Phosphatase and tensin 

homolog). MES-GBM exhibits increased expression of mesenchymal and 

astrocytic markers, and shows a strong contribution of immune cell signatures. 

The presence of these distinct GBM subtypes leads to considerable differences 
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in patient survival rates, with PN related to a better prognosis and MES related 

to poor survival [13] [14]. However, these results are affected by the favorable 

outcome of IDH mutant GBMs which are frequent among PN [15]. Switching from 

PN-to-MES subtypes has been observed upon tumor recurrence and implicated 

in treatment resistance [16]. The CL-GBM shows a better response to aggressive 

therapies. Furthermore, detailed classification based on an integrative 

approaches, including of scRNAseq of 28 tumors, bulk genetic and expression 

analysis of 401 specimens from The Cancer Genome Atlas (TCGA), functional 

approaches, and single-cell lineage tracing has revealed four cellular states: 

neural-progenitor-like (NPC), oligodendrocyte-progenitor-like (OPC), astrocyte-

like (AC), and mesenchymal-like (MES) [17]. These states correlate with specific 

amplifications CDK4, PDGFRA, EGFR loci and mutations in NF1 genes. In 

summary, the heterogeneity observed in HGGs may be partially attributed to 

genetic alterations and the resultant cellular states. Understanding these 

complexities is crucial for developing targeted therapies and improving patient 

prognosis.  

1.3. IDH1/2 Mutations  

A key genetic alteration in diffuse gliomas used as a diagnostic feature is 

the mutational status of IDH1 and IDH2 genes coding for isocitrate 

dehydrogenase 1 and 2. These mutations result in a substitution in the codon 

132 of the IDH1 (in approximately 90% of cases) and at codons 140 or 172 in the 

IDH2 [11]. Those gain-of-function mutations change the functions of the enzyme 

and lead to the conversion of α-ketoglutarate into 2-hydroxyglutarate (2-HG), 

which accumulates in tumor cells. The accumulation of 2-HG induces a 

hypermethylation phenotype known as G-CIMP (glioma CpG island methylator 

phenotype), significantly affecting epigenetic regulation and transcriptional 

patterns [15][18][19]. The presence of IDH1/2 mutations is associated with 

improved clinical outcomes, particularly in lower-grade gliomas (WHO grade 2 

and 3), where they are found in about 70% of cases [20]. In contrast, these 

mutations are present in only 10% of WHO grade 4 gliomas, predominantly in 

recurrent tumors [21]. Consequently, IDH1/2 mutations play a crucial role in 

defining glioma biology and prognosis. 
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1.4. Immune microenvironment of brain tumors 

The tumor microenvironment (TME) in the brain is a complex and ever-

changing ecosystem that significantly influences how tumors grow, invade 

surrounding tissues, and respond to treatments [22]. This environment is made 

up of various neural, neural-derived, stromal-like and immune cells, each playing 

unique roles that can either suppress or promote tumor development and 

progression. While the immune system generally works to eliminate malignant 

cells, many tumors have evolved mechanisms to manipulate these immune 

components for their own benefit, allowing them to evade detection and thrive 

[22]. 

1.5. Key immune cell types in the malignant glioma TME 

Microglia which accumulate in gliomas are the brain's resident myeloid 

cells, while monocytes are often recruited from the bloodstream and differentiate 

into macrophages in TME. Together, these cells make up a significant part of the 

tumor accounting for 30-50% of the tumor mass, and are responsible for initiating 

the immune response in brain tumors [23]. Myeloid cells such as microglia, 

monocytes and macrophages exhibit considerable functional plasticity and can 

shift between states ranging from the extreme two states: a pro-inflammatory 

state that helps fight tumors (M1-like) and an immunosuppressive state that 

supports tumor growth (M2-like) [24]. Unfortunately, in many malignant brain 

tumors, microglia and macrophages tend to favor the M2-like state, in which 

these produces molecules that inhibit the immune responses and promote tumor 

progression [25] [26]. 

Dendritic cells (DCs) act as crucial intermediaries between the innate and 

adaptive immune systems. They capture and present tumor antigens to T cells, 

initiating a tailored immune response [27]. DCs stimulate antigen-specific T cells, 

primarily through cross-presentation by cDC1s, and also contribute to B cell 

activation and proliferation. Signals from DCs guide CD4+ T cells to differentiate 

into T helper subsets (Th1, Th2, Th17) and regulatory T cells (Tregs). DCs shape 

these responses through cytokines and co-stimulatory molecules.  DCs are 

broadly categorized into myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). 

Myeloid DCs arise from myeloid precursors and can also develop from 
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monocytes with GM-CSF and IL-4. They express markers like CD11c and CD1c 

and specialize in antigen presentation to T cells. Plasmacytoid DCs, 

characterized by CD123 and BDCA-2, lack myeloid markers and excel in antiviral 

responses by producing type I interferons via TLR (toll like receptor) 7 and TLR9. 

However, in the presence of tumors, their ability to mature and function properly 

is often compromised due to factors produced by the tumor itself, leading to a 

weakened activation of T cells that are specific to the tumor [24][26]. 

Natural killer cells (NK cells, CD56+CD3− cells) are part of the innate 

immune system and mediate antigen-independent immune surveillance against  

pathogens and damaged cells. NK cells are inhibited by antigen-presenting and 

non-classic HLA (human leukocyte antigen)-I molecules by binding to the 

inhibitory killer immunoglobulin-(Ig) like receptors. In malignant gliomas, a loss of 

heterozygosity of HLA-I coding genes or their deletion occurs. NK cells are kept 

in the equilibrium by a balance of activating and inhibitory receptors. Once 

activated, they can kill directly tumor cells by release of lytic granules or by 

inducing death receptor-mediated apoptosis via the expression of Fas ligand or 

TRAIL (TNF-related apoptosis-inducing ligand) and produce cytokines [28]. 

However, their effectiveness is often diminished in the brain due to hypoxia (low 

oxygen levels) and their interactions with other immune cells that suppress their 

activity [29]. 

 Circulating and lymph node–resident CD8+ T cells could be subdivided 

according to their differentiation state into naive T cells, effector T cells, and 

subsets of memory T cells [30]. Naive CD8+ T cells respond to TCR activation 

by expansion and differentiation into cytotoxic effector cells [31]. Cytotoxic T 

lymphocytes (CTLs, CD8+ T cells) are a critical component of the anti-tumor 

immunity. They are generated in the thymus and express the αβ-T cell receptor 

(TCR) along with the CD8+ co-receptor on their surface and respond to foreign 

antigens presented on MHC (major histocompatibility complex) class I proteins. 

Deficiency of CD8+ T cells hampers anti-tumor immunity and increases 

susceptibility to tumor growth. 

Cytotoxic T cells are essential for directly killing cancer cells, by releasing 

cytotoxic granules containing perforins and granzymes. These granules are sent 

in the direction of the target cell and contain perforins which creates pores in the 

membrane of the target cell used as an entry point for granzymes, which are 
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serine proteases that activate caspases that cleave intracellular proteins. The 

combination of their action ultimately results in the cell apoptosis. CD8+ T cells 

can also induce cell death by interactions of the receptor Fas and the Fas ligand 

(FasL), which are expressed on lymphocytes and target cells. Activated CD8+ T 

cells produce several cytokines such as IFNγ, TNFα, and lymphotoxin-α. In the 

tumor microenvironment effector CD8+ T cells produce interleukin (IL)-2, IL-12, 

and IFNγ, which promote the cytotoxic ability of CD8+ T cells, targeting tumor 

cells for elimination. Moreover, in the glioma TME, those cells frequently become 

exhausted due to constant exposure to tumor antigens and various 

immunosuppressive signals. This exhaustion results in reduced effectiveness in 

fighting tumors [32]. 

CD4+ T helper cells are heterogeneous population which encompass the 

classical T-helper 1 and T-helper 2, and other subsets like T-helper 17, regulatory 

T cell, follicular helper T cell and T-helper 9, each with specific markers and a 

characteristic cytokine profiles. These cells can either enhance or suppress 

immune responses [33]. While Th1 and Th2 cells are considered to be terminally 

differentiated, Th17 and Treg show plasticity, suggesting that their differentiation 

is less stable. In mice, CD8α+ DC control the Th1 lineage, while the CD8α- 

subsets were linked to Th2 differentiation, through IL-12 and IL-6, respectively. 

The CD28 receptor on T cells is activated by ligands the CD80 (B7-1) and CD86 

(B7-2), and this interaction augments TCR signals, promoting T cell proliferation 

and differentiation. Other co-stimulatory molecules comprise CD28 homolog 

inducible co-stimulator (ICOS) and TNF receptor family members (CD27, 4-1BB, 

and OX-40) [34][35]. These receptors have their ligands expressed on DCs. Th1 

cells stimulate other immune cells to attack tumors, while regulatory T cells 

(Tregs) help maintain a balance by preventing overactive responses. 

Unfortunately, Tregs often accumulate in brain tumors and inhibit the activity of 

other immune cells, creating an environment that allows tumors to progress [36] 

[37]. 

B cells are activated by stimulation of the B cell receptor (BCR) with 

soluble or membrane-bound antigens. Activated BCR induces immunoreceptor 

tyrosine-based activation motifs due to phosphorylation by Lyn and Syk kinases, 

which triggers the activation of PI3K (phosphatidylinositol 3-kinase), PLCγ 

(phospholipase Cγ), Vav adaptor proteins, and MAP (Mitogen activated protein) 
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kinases, turning on proliferation and antibody production. The B cell response is 

negatively regulated by the CD22, which through the interaction with CD22L 

maintains self-tolerance [38]. B cells produce antibodies and can have dual roles 

in tumor progression. They may help target tumor cells for destruction or 

contribute to tumor growth by creating environments that support cancer 

progression through immunosuppressive signals [29]. 

Neutrophils are increasingly recognized for their dual roles in cancer 

biology. Neutrophils expressing immunoglobulin (IgG) Fc receptors can directly 

cause cytotoxic damage to tumor cells through antibody-dependent cell-

mediated cytotoxicity (ADCC) by binding to the Fc segment of IgG antibodies on 

tumor cell surfaces [39]. They can adopt a pro-tumor phenotype under certain 

conditions, promoting processes like angiogenesis (formation of new blood 

vessels) that aid tumor growth. Neurotrophils in TME of various cancers, express 

high levels of chemokines (i.e. C-C motif chemokine ligand (CCL)-7, CCL-8 and 

CCL-12) and can recruit Tregs and macrophages promoting tumor growth. They 

secrete factors such as epidermal growth factor (EGF), hepatocyte growth factor 

(HGF), platelet-derived growth factor (PDGF), and neutrophil elastase (NE) 

promoting tumor spreading. Eosinophils and basophils also play roles but are 

less understood in this context [29][40]. 

Understanding the diverse roles of these immune cells within the TME is 

crucial for developing effective therapies against brain tumors. By targeting these 

interactions and altering the immunosuppressive landscape, I may improve 

treatment outcomes for patients facing these challenging cancers. 

1.6. T cell exhaustion 

T cell exhaustion is a state of dysfunction that occurs in T cells during 

chronic infections or within the tumor microenvironment when they are subjected 

to persistent antigen stimulation and inflammatory signals. Unlike functional 

effector T cells, which can effectively eliminate infected or cancerous cells, 

exhausted T cells progressively lose their ability to perform key functions, 

including cytokine production, proliferation, and cytotoxic activity. This 

exhaustion is marked by the upregulation of various inhibitory receptors, such as 

PD-1 (programmed death 1), TIM-3 (T cell immunoglobulin and mucin domain-

containing protein 3), LAG-3 (Lymphocyte-activation gene 3), and CTLA-4 
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(cytotoxic T-lymphocyte–associated antigen 4), which collectively hinder T cell 

activity [41]. The continuous expression of these checkpoint molecules on tumor 

cells or immunosuppressive macrophages, combined with the effects of an 

immunosuppressive tumor microenvironment, reinforces T cell exhaustion and 

facilitates immune evasion by cancer cells [41]. Additionally, exhausted T cells 

often exhibit metabolic dysregulation, further impairing their capacity to mount 

effective immune responses. Importantly, the extent of exhaustion can vary 

among T cells; some may retain partial functionality, making them potential 

targets for restoration therapies with immune checkpoint inhibitors [42][43]. 

Studies show that while immune checkpoint inhibitors (ICIs) have transformed 

treatment for several cancers, their efficacy in brain tumors is low or none due to 

the unique challenges presented by the immunosuppressive TME.  

Recent clinical trials have explored various ICIs, such as PD-1 blocking 

antibodies nivolumab and pembrolizumab, showing some success in treating 

brain metastases from melanoma and non-small cell lung cancer (NSCLC). 

However, the results of three clinical trials reported limited or none overall 

survival benefits for glioblastoma patients [44]. The variability in responses may 

be influenced by factors such as tumor type, immune microenvironment 

composition, and previous treatments received by patients. Understanding the 

mechanisms that drive T cell exhaustion is essential for developing strategies to 

restore T cell function and enhance the effectiveness of immunotherapies in 

cancer treatment [45]. 

1.7. Brain-specific immune mechanisms 

The central nervous system (CNS) has the unique environment and is 

often seen as an immune-privileged organ, primarily because of the blood-brain 

barrier (BBB) [46][47]. This barrier acts like a gatekeeper, preventing most 

immune cells and molecules from entering. While this is essential for protecting 

the brain from infections and inflammation, it also makes it difficult for immune 

cells and treatments to reach brain tumors effectively. The discovery of the CNS 

lymphatic drainage system composed of a glymphatic-meningeal-cervical 

lymphatic vessel pathway, shed a new light on CNS immunity [48]. Majority of 

non-neuronal cells are astrocytes and microglia, that play a significant role in 

maintaining CNS homeostasis. They release anti-inflammatory factors , with 
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TGF-β (transforming growth factor beta) being the most important one, and can 

suppress the activation of any immune cells that do manage to infiltrate the brain. 

This further enhances the tumor's ability to evade immune responses [22]. These 

unique characteristics of the brain present significant challenges for 

immunotherapy, which aims to boost the body’s immune response against 

tumors. To tackle these hurdles, researchers are exploring innovative strategies 

that could improve how immune cells infiltrate and become active within the CNS 

[49]. Further dissecting these complexities, may facilitate developing more 

effective treatments that can mobilize the immune system against brain tumors. 

1.8. General effects of IDH1/2 mutations on immune tumor 
microenvironment 

IDH1/2 mutations have been shown to significantly alter the tumor immune 

microenvironment, leading to an immunologically quiescent state. Tumors 

harboring IDH1 mutations exhibit reduced infiltration of tumor-infiltrating 

lymphocytes (TILs) and lower expression of immune checkpoint proteins such as 

PD-L1 compared to their wild-type counterparts [50]. This immunosuppressive 

environment is largely attributed to the accumulation of 2-hydroxyglutarate (2-

HG), which not only inhibits T cell proliferation but also disrupts TCR signaling 

pathways, impairing the ability of T cells to mount an effective anti-tumor 

response. Furthermore, 2-HG reduces the expression of chemokines such as the 

CXCL9 (CXC motif chemokine ligand 9) and CXCL10, essential for CD8+ T cell 

recruitment, thereby contributing to a diminished immune response within the 

tumor microenvironment [51]. Studies indicate that this unique immune 

landscape may hinder the efficacy of immunotherapeutic strategies, suggesting 

that targeting the metabolic pathways associated with IDH1/2 mutations could 

enhance immune responses against gliomas [52]. 

1.9.  Known effects of the IDH1 mutation on the immune 
microenvironment of gliomas 

The presence of the IDH1 mutation not only alters the metabolic 

landscape of gliomas but also significantly impacts the tumor microenvironment, 

particularly through its effects on myeloid cell functions. In IDH1-mutant gliomas, 

the accumulation of 2-HG leads to a blockade in the differentiation of infiltrating 
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myeloid cells, resulting in their immature and immunosuppressive phenotype 

[52]. This altered state is characterized by a reduced capacity for antigen 

presentation and a predominance of immunosuppressive macrophages, which 

further inhibits T cell activation and proliferation. The metabolic changes induced 

by mutant IDH1 also affect the recruitment of immune cells to the tumor site; for 

instance, while early-stage IDH-wild-type tumors exhibit a higher influx of blood-

borne macrophages, IDH-mutant tumors show a delayed recruitment pattern 

[52].   

This differential recruitment and functional state of myeloid cells contribute 

to an environment that favors tumor progression and resistance to therapies, 

underscoring the necessity for targeted immunotherapeutic strategies that can 

counteract these immunosuppressive mechanisms inherent to IDH1-mutant 

gliomas [53]. 

1.10. Effects of inhibitors targeting the mutant IDH1 

The uptake of 2-HG by infiltrating T cells and myeloid cells leads to 

impaired T cell activation and proliferation, preventing an effective antitumor 

immune response. Recent preclinical studies have demonstrated the potential of 

mutant IDH1 inhibitors (mIDH1i) in halting gliomagenesis and also in modulating 

the immune microenvironment [54] [55]. These inhibitors have shown promise in 

early clinical trials, yet their immunological benefits remain underexplored 

compared to their impact on tumor growth. Treatment with mIDH1i was observed 

to enhance T cell infiltration and promote the presence of activated T cell subsets 

while reducing the abundance of regulatory T cells. Notably, the therapy enriched 

CD4+ T cells expressing CD40L and interferon-associated markers, and top T 

cell clones were predominantly found within these activated subsets [54][55]. 

When combined with immune checkpoint blockade, IDH1i treatment showed a 

synergistic effect, resulting in greater tumor regression compared to 

monotherapy. These findings underscore the necessity of reducing 2-HG levels 

to restore a functional immune environment that can be leveraged by 

immunotherapeutic approaches, paving the way for combination strategies that 

pair mIDH1 inhibitors with checkpoint inhibitors or cancer vaccines in clinical 

settings [54] [55]. 
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1.11. The GL261 mouse glioma model 

The GL261 glioma cells were derived from a spontaneous murine glioma, 

and are a commonly used tool in glioblastoma research due to their ability to 

replicate many characteristics of human GBM, such as an aggressive growth, 

invasiveness, and complex immune interactions within the brain [56]. Cells were 

transformed by intracranial injection of the chemical carcinogen 

methylcholanthrene into C57BL/6 mice, which resulted in a glioma that could be 

propagated and later adapted to cell culture, enabling reproducible 

transplantation in immunocompetent C57BL/6 mice. GL261 tumors express 

mutations in key oncogenes, including p53 and Ras, which contribute to their 

malignant behavior, and they exhibit high levels of angiogenesis, reflecting the 

vascular characteristics of human gliomas [56]. This makes the model invaluable 

for studying glioma biology, and novel therapeutic strategies. However, it is 

considered immunologically 'hotter' than high-grade gliomas or glioblastomas, so 

its use for studying immunology and immunotherapy is currently under question 

[57]. Nevertheless, it remains the most widely used murine glioma model in 

preclinical trials, allowing for a deeper understanding of it crucial for the scientific 

community. 

1.12. IDH1wt/mt mouse glioma models 

The development of reliable mouse glioma models that reflect the genetic 

complexity of human gliomas is essential for studying gliomagenesis and 

therapeutic responses. The following four cell lines were engineered in the 

laboratory of Dr. Maria Castro to represent key genetic alterations commonly 

found in gliomas, including mutations in genes related to signaling pathways, 

tumor suppressor inactivation, along with the IDH1 mutation, which has distinct 

effects on glioma biology [58].  

The first cell line, created by introducing an oncogenic NRAS gene 

alongside shRNA-mediated knockdown of TP53 and ATRX, maintains a wild-

type IDH1 gene. The second line is identical in its genetic modifications but 

carries the p.R132H mutation in the IDH1 gene. The third cell line has 

overexpression of the PDGFB oncogene, mimicking receptor tyrosine kinase 

pathway activation, in combination with shRNA knockdown of TP53 and ATRX, 
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along with deletions in genes coding for the tumor suppressors Ink4a and Arf. 

This cell line also has a wild-type IDH1 gene. The fourth line shares the above 

alterations but carries the p.R132H IDH1 mutation, allowing for the study of IDH1-

mutant effects in a PDGFB-driven glioma background [58].  

1.13. Next-Generation Sequencing 

Next-generation sequencing (NGS) refers to a group of advanced 

sequencing technologies that enable high-throughput, rapid, and cost-effective 

sequencing of RNA, genomes and other complex genetic material. Unlike 

traditional Sanger sequencing, which sequences a single DNA fragment at a 

time, NGS platforms can sequence millions of DNA fragments in parallel, 

generating vast amounts of data in a single run. These technologies rely on a 

range of methods to fragment DNA, attach adapters, and determine the 

sequence of each fragment [59]. Illumina sequencing, one of the most widely 

used NGS platforms, operates through a process known as sequencing-by-

synthesis. In this method, DNA fragments are bound to a solid surface, where 

they are amplified to form clusters. During sequencing, fluorescently labeled 

nucleotides are incorporated into the growing DNA strand one base at a time. 

The incorporation of each nucleotide is detected using high-resolution imaging, 

allowing the precise determination of the DNA sequence [59]. This technology 

has become a cornerstone of genomics research, enabling applications ranging 

from whole-genome sequencing to transcriptomic and epigenomic analysis. 

1.14. Single Cell RNA sequencing (scRNA-seq) 

scRNA-seq has emerged as a groundbreaking technique that allows us to 

explore gene expression at the individual cell level, uncovering the intricate 

diversity and complex transcriptomic profiles of tissues. This method can be 

approached in several ways, primarily divided into well-based and droplet-based 

techniques [60].  

Well-based methods, such as Smart-seq, involve isolating single cells into 

separate wells where their RNA is captured, converted into DNA, and then 

sequenced. While these methods offer high sensitivity and provide full-length 

transcript information, they are generally more time-consuming and less scalable 

[61].  
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On the other hand, droplet-based approaches, like those offered by the 

10x Genomics platform, encapsulate individual cells within microfluidic droplets 

along with the necessary reagents for RNA capture and barcoding. This enables 

the simultaneous processing of thousands of cells in a single experiment, making 

it highly scalable and cost-effective. Although these methods typically provide 3' 

or 5' gene expression profiles rather than full-length transcripts, they are 

incredibly powerful for high-throughput analysis. For instance, the 10x Genomics 

3' scRNA-seq kit focuses on the 3' end of mRNA transcripts, allowing for an 

efficient count of gene expression based on the polyadenylated tails of the 

mRNAs. This has facilitated large-scale transcriptomic studies, including the 

identification of rare cell populations and the exploration of dynamic gene 

expression patterns [60].  

A recent and exciting advancement in single-cell transcriptomics is Cite-

seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing), which 

combines scRNA-seq with antibody-based profiling. This technique enables the 

simultaneous measurement of gene expression and cell surface protein markers 

in individual cells, providing a more comprehensive understanding of cellular 

identity and functional states. By integrating these multiple layers of information, 

Cite-seq opens up new pathways for deciphering complex biological systems and 

promises to revolutionize our understanding of cellular biology [62].  

1.15. Initial processing of Illumina sequencing results 

The analysis of Illumina sequencing data typically begins with the 

conversion of raw base call files (BCL) into FASTQ files, which contain the 

nucleotide sequences of the reads along with quality scores [60]. This process is 

achieved using software tools like bcl2fastq, which demultiplexes data from 

multiple samples (if applicable) and generates FASTQ files for downstream 

analysis. Once the FASTQ files are obtained, the next step is to align the 

sequencing reads to a reference genome or transcriptome. This mapping 

process is crucial for identifying the genomic locations of the reads and 

determining their corresponding gene or transcript. Computational tools such as 

STAR, HISAT2, or Bowtie2 are commonly used to perform the alignment, 

leveraging algorithms that efficiently map millions of short reads to large 

reference sequences [60]. For single-cell RNA sequencing (scRNA-seq), the 
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process is similar, but it involves mapping reads from individual cells, often stored 

with a unique cellular barcode, to a reference genome. Following the alignment, 

a count matrix is generated, where the rows represent individual cells and the 

columns represent genes or transcripts. This matrix quantifies a number of reads 

associated with each gene in each cell, enabling the analysis of gene expression 

at the single-cell level. The matrix is then used for downstream analyses, such 

as identifying cell-type populations, characterizing gene expression variability, 

and exploring cellular states [60]. Specialized tools like Cell Ranger (for 10x 

Genomics data) are often used to process scRNA-seq data, accounting for 

unique barcodes, sequencing depth, and the challenges of handling sparse data 

(due to the low number of transcripts captured per cell) [60]. The resulting count 

matrix serves as the foundation for further exploration of cellular heterogeneity 

and gene expression dynamics in complex biological systems.  

1.16. Data Normalization 

Normalization of scRNA-seq data is essential to correct for technical 

biases and differences in sequencing depth across individual cells, ensuring that 

observed variations in gene expression reflect true biological differences rather 

than technical artifacts. In scRNA-seq, cells are captured and sequenced 

independently, but variations in cell-specific factors, such as RNA content or 

capture efficiency, can lead to unequal sequencing depth [63].  

To address this, normalization techniques are applied to adjust for these 

biases and make gene expression levels comparable across cells. Two common 

approaches for normalization include log normalization and regression-based 

methods such as SCTransform. 

Log normalization is one of the most widely used methods, where raw 

gene counts are divided by the total number of unique molecular identifiers 

(UMIs) or reads per cell, then scaled to a constant factor, typically the median or 

total count across cells [63]. This results in a normalized count that accounts for 

varying sequencing depths. Afterward, a log transformation is applied to stabilize 

variance across genes and make the data more normally distributed, which is 

beneficial for downstream statistical analyses, such as clustering or differential 

expression. 
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On the other hand, SCTransform is a more advanced method that 

employs a regularized negative binomial regression model to normalize the data. 

This method accounts for both sequencing depth and cell-specific biases more 

effectively by modeling the technical noise inherent in scRNA-seq data. 

SCTransform normalizes the data while simultaneously stabilizing the variance 

across genes, which improves the detection of differential gene expression, 

particularly in cases of highly variable genes or when dealing with sparse data 

[63]. While log normalization is effective for many applications, SCTransform has 

been shown to offer better performance in cases where data exhibit greater 

technical noise, as it adjusts for factors such as batch effects and overdispersed 

gene expression [64]. Both approaches are widely implemented in tools such as 

Seurat, allowing researchers to choose the most appropriate method based on 

their data and analytical goals. 

1.17. Data Scaling 

Once scRNA-seq data are normalized, scaling becomes a crucial step to 

prepare the data for downstream analysis. Scaling refers to the transformation of 

normalized expression values so that they become more comparable across 

genes and cells. This process standardizes each gene’s expression levels to 

have a mean of zero and a standard deviation of one, effectively centering the 

data and ensuring equal contribution from all genes during dimensionality 

reduction techniques like principal component analysis (PCA) and clustering [63].  

Scaling helps to reduce the impact of highly expressed or variable genes, 

allowing a more balanced analysis of all genes within the dataset. 

Scaling of scRNA-seq data, as implemented in the ScaleData function 

from the most popular programistic package for scRNA-seq data analysis 

“Seurat”, involves a series of mathematical transformations aimed at 

standardizing the expression values of each gene across all cells. Specifically, 

for each gene, the mean expression value across all cells is calculated and 

subtracted from each cell’s expression value for that gene. This step centers the 

data, resulting in a mean of zero for each gene. Next, the standard deviation of 

the expression values for that gene is computed, and each value is divided by 
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this standard deviation. Mathematically, if xij is the expression value of gene i in 

cell j, the scaled expression x’ij is given by: 

 

where mean(xi) is the average expression of gene iii across all cells, and 

SD(Xi) is the standard deviation. This standardization ensures that each gene 

has a distribution with a mean of zero and a variance of one, making all genes 

equally weighted for downstream analyses like PCA and clustering [63].  

SCTransform in Seurat takes a more sophisticated approach by using a 

regularized negative binomial regression model to normalize and scale data 

simultaneously. The method first models the raw gene counts as a function of 

sequencing depth (or other technical factors) using a negative binomial 

distribution, which is well-suited to the overdispersed nature of scRNA-seq data 

[63]. For each gene, SCTransform estimates the parameters of the negative 

binomial distribution, including the mean and variance, while regularizing the 

variance to stabilize noisy estimates. The model is used to predict and remove 

the technical variation, yielding normalized values. 

Mathematically, the observed counts yij for gene i in cell j are modeled as: 

                                             yij ∼ Negative Binomial(μij, θi)  

 

where μij  is the expected count for gene i in cell j based on the technical 

covariates (e.g., sequencing depth), and θi is the dispersion parameter. The 

residuals from this model, which represent the biological component of variation, 

are then transformed into standardized values (similar to ScaleData) by 

subtracting the gene-wise mean and dividing by the gene-wise standard 

deviation of the residuals [63]. This dual approach of normalization and scaling 

ensures that technical noise is minimized and biological signals are preserved 

[64].  

In summary, while ScaleData performs a straightforward standardization 

of expression values, SCTransform applies a more comprehensive model-based 

normalization that corrects for technical factors and stabilizes variance, making 

it particularly effective for handling complex scRNA-seq datasets [64].  
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1.18. Dimensionality reduction 

Dimensionality reduction is a crucial step in the analysis of scRNA-seq 

data, as these datasets typically consist of thousands of genes measured across 

thousands of cells, creating a high-dimensional space [65]. Analyzing data in 

such a high-dimensional setting can be computationally challenging and may 

obscure underlying biological patterns due to noise and redundancy in the data. 

By reducing the number of dimensions, the data structure was simplified while 

preserving as much meaningful variation as possible, facilitating more efficient 

and interpretable downstream analyses, such as clustering and visualization. 

Several popular methods are used for dimensionality reduction in scRNA-

seq data. Principal component analysis (PCA) and uniform manifold 

approximation and projection (UMAP) are among the most commonly employed. 

Other methods include t-distributed stochastic neighbor embedding (t-SNE), 

independent component analysis (ICA), and diffusion maps, each offering unique 

strengths in capturing different aspects of the data structure [65].  

1.19. Principal Component Analysis (PCA) 

PCA is a linear method that transforms the original high-dimensional data 

into a smaller set of uncorrelated components called principal components (PCs). 

[66]. These PCs are ordered such that the first few components capture the most 

variance in the data. Mathematically, PCA computes the eigenvalues and 

eigenvectors of the data covariance matrix. The data are then projected onto the 

top eigenvectors, which represent directions of maximum variance. If X is the 

scaled expression matrix, PCA solves for: 

                                              X=UΣVT 

where U contains the principal components, Σ is a diagonal matrix of singular 

values (representing the amount of variance captured by each component), and 

VT contains the original features' loadings. By selecting the top components that 

capture most of the variance, PCA reduces the data to a lower-dimensional 

space, making it suitable for clustering and preliminary exploration [66]. 
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1.20. Uniform Manifold Approximation and Projection (UMAP) 

UMAP is a non-linear dimensionality reduction technique that is 

particularly effective for visualizing scRNA-seq data. It constructs a high-

dimensional graph of the data and then optimizes a low-dimensional 

representation that preserves the local and global structure of the data [67]. 

Unlike PCA, which assumes a linear relationship among features, UMAP can 

capture complex non-linear relationships, making it well-suited for visualizing 

cellular heterogeneity in scRNA-seq datasets. The algorithm works by first 

computing a weighted graph of nearest neighbors in the original space and then 

optimizing a layout in the lower-dimensional space to maintain the pairwise 

relationships. The result is a two- or three-dimensional embedding that retains 

both the local neighborhood relationships and the overall data distribution [67].  

1.21. Nearest Neighbors analysis 

Identifying and understanding distinct cell populations is a key goal of 

scRNA-seq analysis. To achieve this, clustering methods are applied, which rely 

heavily on constructing a nearest neighbors graph [68]. The concept of nearest 

neighbors involves calculating the distance or similarity between cells based on 

their expression profiles. Cells that are closer to each other in the reduced-

dimensional space (such as PCA space) are considered to be more similar and 

likely belong to the same cell type or state. The k-nearest neighbors (k-NN) graph 

is then constructed, where each cell is connected to its k most similar neighbors, 

forming the basis for many clustering algorithms [69].  

1.22. Clustering algorithms 

Various clustering methods have been developed to group similar cells 

into clusters, reflecting distinct biological populations. Popular clustering 

techniques for scRNA-seq data include k-means clustering, hierarchical 

clustering, and graph-based methods such as Louvain and Leiden clustering 

[69]. Each method has unique advantages, but graph-based clustering 

algorithms have become particularly popular in scRNA-seq analysis due to their 

ability to capture complex relationships between cells. 
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The Louvain algorithm is a community detection method used to identify 

clusters in a k-NN graph. It is a modularity-based algorithm, meaning it seeks to 

maximize the modularity score, which quantifies the strength of division of a 

network into communities. The algorithm works in two main phases: first, it 

assigns each cell to its own cluster and then iteratively merges clusters to 

increase modularity. If no further merges can increase the modularity score, the 

algorithm stops, resulting in a hierarchical community structure [69]. Louvain 

clustering is computationally efficient and widely used in scRNA-seq analysis, but 

it can sometimes yield unstable results, particularly with noisy or sparse data.  

The Leiden algorithm is an improvement over Louvain, addressing some of its 

limitations, such as the potential for generating disconnected or poorly defined 

clusters [69]. Like Louvain, Leiden is also modularity-based but introduces 

several refinements to ensure more stable and well-defined clusters. The 

algorithm works by refining the partitioning process in three steps: first, it 

identifies an initial partition similar to Louvain, then it refines the partitioning to 

ensure all clusters are connected, and finally, it merges clusters in a way that 

guarantees improved modularity. As a result, Leiden clustering tends to be more 

robust and accurate, especially when dealing with large or complex scRNA-seq 

datasets [69].  

1.23. Differential Gene Expression analysis 

Differentially expressed genes (DEG) analysis is a fundamental aspect of 

scRNA-seq studies that aims to identify genes whose expression levels differ 

significantly between distinct cell populations or experimental conditions. This 

analysis is crucial for understanding the molecular mechanisms that distinguish 

different cell types, states, or responses to various stimuli. By comparing gene 

expression profiles, DEG analysis highlights candidate genes involved in 

biological processes such as cell differentiation, immune response, or disease 

pathology [64][70].  

The process of DEG analysis in scRNA-seq data presents unique 

challenges compared to bulk RNA-seq due to the sparse and noisy nature of 

single-cell data. Many scRNA-seq datasets have a substantial number of 

dropouts (genes not detected in some cells) and exhibit high variability in gene 

expression levels [70]. Consequently, specialized statistical models and 
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algorithms have been developed to account for these characteristics. Popular 

methods for DEG analysis in scRNA-seq include Wilcoxon rank-sum tests, 

negative binomial models, and hurdle models that address the zero-inflated 

nature of the data. 

One commonly used approach is to perform DEG testing using statistical 

frameworks that account for the distribution of scRNA-seq data. For instance, 

Seurat implements a Wilcoxon rank-sum test by default, which is a non-

parametric method suitable for comparing two groups of cells. Other tools, such 

as DESeq2 and edgeR, use negative binomial models that are more appropriate 

for data with overdispersion. Methods such as MAST (Model-based Analysis of 

Single-cell Transcriptomics) provide a hurdle model to handle zero inflation, 

distinguishing between true absence of expression and technical dropouts [70].  

In the context of scRNA-seq, DEG analysis can be conducted between 

predefined cell clusters, comparing the expression profiles of cells in different 

conditions or identifying genes that vary along a pseudotime trajectory [64]. This 

allows researchers to pinpoint key drivers of cellular transitions or identify 

biomarkers associated with specific cell states. Importantly, the results of DEG 

analysis often require downstream validation, such as pathway enrichment 

analysis, to uncover the biological significance of the identified genes. 

1.24. Gene Set Enrichment Analysis (GSEA) 

Gene Set Enrichment Analysis (GSEA) is a widely used method for 

interpreting gene expression data in the context of predefined biological 

pathways or gene sets. Instead of analyzing individual genes, GSEA evaluates 

the collective behavior of groups of genes, making it particularly powerful for 

understanding the functional implications of changes in gene expression. GSEA 

is based on the hypothesis that subtle, coordinated changes in the expression of 

a set of functionally related genes can be more biologically informative than the 

changes in individual genes [71].  

The GSEA algorithm works by ranking all genes in a dataset based on 

their expression differences between two conditions or groups (e.g., treated vs. 

control). It then assesses whether the members of a given gene set are 

overrepresented at the top or bottom of this ranked list. The enrichment score 

(ES) is calculated for each gene set, reflecting the degree to which the set is 
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overrepresented at the extremes of the entire ranked gene list. A statistical 

significance of the ES is determined using permutation testing, which helps 

control for false positives. Additionally, a false discovery rate (FDR) is often used 

to account for multiple testing [71].  

Other popular approach, the overrepresentation analysis (ORA) is a 

simpler method that identifies enriched pathways by comparing a number of 

DEGs in a predefined gene set to what would be expected by chance. ORA 

typically requires an arbitrary threshold, such as a p-value or fold-change cutoff, 

to define a list of DEGs. However, this approach has several limitations. First, it 

is highly dependent on the chosen threshold, which may exclude genes with 

subtle but biologically significant changes. Second, ORA focuses only on genes 

that pass the threshold, ignoring the rest of the gene expression data and 

potentially losing valuable information [71].  

1.25. Pseudotime analysis 

Pseudotime analysis is a computational approach used in scRNA-seq 

studies to infer the temporal ordering of cells along a continuous trajectory. Unlike 

time-course experiments, scRNA-seq data are often derived from a snapshot of 

cells captured at a single time point. However, in many biological contexts, such 

as differentiation or cellular activation, cells progress through dynamic 

processes. Pseudotime analysis leverages the high-dimensional gene 

expression data to reconstruct these processes by arranging cells along a 

pseudo-temporal axis, providing insights into the underlying biological transitions 

without prior knowledge of exact time points [72].  

The key idea behind pseudotime analysis is that cells in different stages 

of a biological process can be ordered based on their similarity in gene 

expression profiles. This analysis begins by identifying variable genes and 

reducing the dimensionality of the data to reveal the primary axes of variation, 

often using methods like PCA or diffusion maps. Next, a trajectory is constructed 

using techniques such as minimum spanning trees or graph-based approaches, 

with cells placed along a path that best represents the progression of the 

biological process. The distance along this path is used to assign each cell a 

pseudotime value, which reflects its relative position in the trajectory [72].  
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1.26. Transcription factors activity analysis 

Transcription factor (TF) activity analysis aims to infer the regulatory 

influence of transcription factors on gene expression, which is essential for 

understanding gene regulatory networks in different cellular contexts. Rather 

than simply examining the expression levels of transcription factors themselves, 

this analysis focuses on the downstream effects of TFs by assessing the 

expression of their target genes, known collectively as regulons. Regulons are 

sets of genes that are regulated by a common transcription factor and are 

typically defined based on prior biological knowledge or computational 

predictions [73]. By analyzing changes in regulon activity, researchers can infer 

the functional activity of transcription factors even when their expression levels 

do not change significantly. 

One of the most effective frameworks for TF activity analysis is the 

combination of DoRothEA and VIPER [73]. DoRothEA is a curated resource of 

transcription factor-target gene interactions that provides information on regulons 

across different confidence levels (A to E), based on evidence from experimental 

validation, literature curation, and computational predictions. These interactions 

are supported by extensive biological knowledge and are used to create a 

comprehensive database that facilitates robust TF activity inference [73].  

VIPER (Virtual Inference of Protein activity by Enriched Regulon analysis) 

is an algorithm that uses the information from DoRothEA to infer TF activity 

scores from gene expression data. VIPER applies a statistical approach to 

determine whether the expression of a given regulon is significantly altered, 

thereby reflecting the activity level of its associated transcription factor. The 

algorithm uses a method known as “master regulator analysis,” which integrates 

the expression changes of multiple target genes to compute an enrichment score. 

This score indicates whether a transcription factor is likely to be activated or 

repressed. VIPER is designed to account for the complexity of gene regulatory 

networks, using a permutation-based approach to assess statistical significance 

and control for confounding factors [74].  
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1.27. Ligand-receptor analysis 

Ligand-receptor analysis is a powerful approach to study intercellular 

communication in complex tissues using scRNA-seq data. It aims to identify and 

characterize the signaling interactions between different cell types, providing 

insights into how cells coordinate their functions in physiological and pathological 

contexts. In this analysis, ligand-receptor pairs—where a ligand produced by one 

cell binds to a receptor on another cell—are used to infer communication 

networks that underlie cellular behaviors such as immune responses, tissue 

homeostasis, or cancer progression [75].  

One of the leading tools for ligand-receptor analysis is CellChat, a 

computational framework designed to infer and visualize intercellular 

communication networks from scRNA-seq data. CellChat uses a curated 

database of known ligand-receptor interactions, covering a wide range of 

signaling pathways, to systematically identify potential communication events. 

The tool works by first quantifying the expression levels of ligands and their 

corresponding receptors across all cell types or clusters in the dataset. It then 

uses a probabilistic model to infer the likelihood of communication between cell 

populations, integrating information about multiple interacting partners and 

signaling pathways [75].  

CellChat also includes methods to predict the functional consequences of 

signaling interactions and visualize the results in an intuitive way. The tool 

generates comprehensive visualizations, such as signaling networks, where 

nodes represent cell types, and edges represent inferred communication events 

[75]. It can also display pathway-specific communication patterns, allowing 

researchers to understand which pathways are most active in mediating cell-cell 

interactions. Additionally, CellChat can perform differential analysis to compare 

communication networks across different conditions, such as healthy vs. 

diseased states, revealing context-specific signaling mechanisms [75].  

A unique feature of CellChat is its ability to group signaling pathways into 

functional categories, making it easier to interpret the biological relevance of the 

interactions [75]. For instance, pathways involved in immune modulation, growth 

factor signaling, or extracellular matrix remodeling can be analyzed separately to 

understand their roles in specific biological processes. By leveraging the rich 
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information provided by CellChat, researchers can gain a deeper understanding 

of the complex communication networks that govern cellular function and how 

these networks are rewired in response to environmental changes or disease. 

1.28. Visium Spatial Transcriptomics 

Spatial transcriptomics techniques can be broadly divided into spot-based 

and FISH (fluorescent in situ hybridization)-like approaches, each offering unique 

advantages for understanding gene expression within tissue architecture [76]. 

Visium spatial transcriptomics is a prominent spot-based technique that allows 

for the simultaneous measurement of gene expression and spatial localization 

within tissue samples. In this method, tissue sections are placed on a specialized 

array containing spatially indexed spots, each capable of capturing RNA from the 

tissue. After capturing the RNA, it is converted into cDNA and sequenced, with 

spatial information retained for each transcript based on its location on the tissue 

[77]. This approach enables high-resolution analysis of gene expression in its 

native tissue context, revealing how cellular activity varies across different tissue 

regions. Unlike scRNA-seq, which isolates individual cells, Visium preserves the 

spatial organization of gene expression, providing valuable insights into tissue 

heterogeneity, cellular microenvironments, and disease progression. Recent 

advancements in Visium technology, including higher resolution and multiomic 

integration, further enhance its ability to unravel complex biological systems and 

disease mechanisms, offering powerful insights into developmental biology, 

cancer, and neurological disorders. 

In contrast, FISH-like methods, such as multiplexed RNA FISH, involve 

the direct hybridization of fluorescent probes to specific RNA molecules in tissue 

sections, providing high-resolution, single-molecule visualization of gene 

expression [76]. While these methods offer unmatched spatial precision and the 

ability to visualize individual transcript molecules, they are typically more labor-

intensive and have limited scalability compared to spot-based approaches. FISH-

like techniques are particularly powerful for studying the localization of individual 

genes within the tissue, but their throughput is generally lower than that of spot-

based platforms like Visium, making them better suited for targeted, high-

precision studies. 
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The analysis of Visium spatial transcriptomics data shares many 

similarities with scRNA-seq data analysis, particularly in the initial steps [78]. Both 

begin with quality control procedures to assess data integrity, followed by 

normalization to adjust for technical biases. In both cases, gene expression 

matrices are generated, and downstream analyses, such as dimensionality 

reduction, clustering, and differential expression, are performed to uncover 

biological insights [78]. The key difference lies in the spatial component of Visium 

data, where the expression profiles are also mapped to tissue locations, adding 

an extra layer of complexity that necessitates spatially aware visualization and 

analysis techniques [78]. Despite this, the core analytical workflow remains highly 

analogous to that of single-cell RNA-seq. 

1.29. Spot deconvolution 

Spot deconvolution is an essential approach in spatial transcriptomics, 

used to untangle the mixed gene expression profiles captured in each tissue spot, 

which typically contains multiple cell types [79]. One advanced method for spot 

deconvolution is Robust Cell Type Decomposition (RCTD), a computational 

technique designed to leverage cell type profiles derived from scRNA-seq data. 

RCTD uses these reference profiles to decompose the mixed gene expression 

signals in spatial spots, providing estimates of the relative abundance of each 

cell type in each spot. Additionally, RCTD corrects for differences across 

sequencing technologies, making it more robust and adaptable to varying 

experimental conditions [79]. This method enhances the accuracy of spatial 

transcriptomics analyses by enabling the identification and quantification of cell 

types in their native tissue context, allowing researchers to explore cellular 

heterogeneity and tissue organization in unprecedented detail. 
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2. Aims 

The Ph.D. thesis addresses two primary objectives: 

Objective 1: To decode the cellular heterogeneity of immune cells within 

the microenvironment of experimental murine gliomas. This includes profiling 

individual immune cell types, elucidating their functional characteristics, and 

mapping the interactions between these cell populations. The goal is to construct 

a reference atlas that will support and guide future research. 

Objective 2: To examine the impact of the mutant IDH1 R132H on the 

immune landscape within high-grade gliomas in mice, with comparative analysis 

against human glioma data to confirm translational relevance. 

 

The specific aims were as follows:  

1. To characterize and categorize immune cells within the glioma 

microenvironment at 21st day post-implantation using the CITE-seq 

dataset. 

2. To analyze and define the functional attributes of each immune cell 

type infiltrating the glioma microenvironment. 

3. To investigate interactions between myeloid and lymphoid 

populations within the glioma TME. 

4. To assess the influence of the mutant IDH1 R132H on cell type 

proportions, phenotypes and interactome in the glioma immune 

microenvironment . 

5. To validate primary findings through complementary methods, 

including flow cytometry and immunofluorescence. 
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3. Materials and Methods 

Author Contribution 

All wet lab experiments were performed by Dr. Anna Lenkiewicz, Dr. Salwador 

Cyranowski, Dr. Mitrajit Ghosh, and Paulina Pilanc-Kudlek. All analyses, 

graphs, and biological interpretations of the data presented in this thesis were 

performed solely by me, with the exception of the preliminary analysis of the 

flow cytometry data. 

 

Animals 

Male 8-week-old C57BL/6 mice were purchased from the Nencki Institute 

of Experimental Biology, Polish Academy of Sciences, Poland. Animals were 

habituated for 2 weeks before the implantation procedure. Animals were kept in 

individually ventilated cages, with free access to food and water, at the 

temperature of 21–23 °C, 50–60% humidity, under a 12 h/12 h day and night 

cycle. All experimental procedures on animals were approved by the First Local 

Ethics Committee for Animal Experimentation in Warsaw (approval no 1163/21 

and 1261/2021). 

3.1. Cell Lines 

GL261 glioma cells were obtained from prof. Helmut Kettenman (MDC, 

Berlin, Germany) and used for generating GL261 luc+/tdT+ cell line that 

expresses Firefly Luciferase (luc) and tandem Tomato (tdT) fusion protein [111]. 

U87 MG cells were purchased from ATCC.  GL261 and U87 cells were cultured 

in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS, 10500-064, Gibco, MD, USA) and antibiotics (100 U/mL 

penicillin, 100 µg/mL streptomycin, 15070063, Gibco) in a humidified atmosphere 

of CO2/air (5%/95%) at 37 °C (Heraeus, Hanau, Germany). Other four glioma cell 

lines with specific genotype: 1) NRAS; shTP53-GFP; shATRX; wt IDH1, 2) 

NRAS; shTP53-GFP; shATRX; mtIDH1 (R132H), 3) PDGFB; shTP53; shATRX; 

Ink4a; Arf-/-;  wt IDH1, 4) PDGFB; shTP53; shATRX; Ink4a; Arf-/-; mt IDH1 

(R132H) were obtained from prof. Maria G. Castro, and were cultured in 

DMEM/F12 (Gibco, 31331-028), B-27 supplement (Gibco, 12587-010), N-2 

supplement (Gibco, 17502-048), Antibiotics: Antimycotic (100X), Streptomycin, 
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Amphotericin B, Penicillin (Gibco; 15240062), Normocin (InvivoGen, ant-nr-1), 

rFGF and rEGF (20 ng/μL each stock, 1000x formulation; Shenandoah Biotech, 

100-26, 100-146) in a humidified atmosphere of CO2/air (5%/95%) at 37 °C 

(Heraeus, Hanau, Germany).  

3.2. Implantation of the glioma cells  

Implantation was performed by Dr. Anna Lenkiewicz. Mice (10-week old) 

were under 2% isoflurane (Piramal critical care B.V) anesthesia during the whole 

procedure. Next, animals were injected with analgesic butorphanol (2 mg/kg 

bodyweight; Orion Pharma), Bupivacaine 0,5% (5 mg/kg bodyweight; Polfa 

Warszawa S.A.), Meloxicam (2 mg/kg bodyweight; Boehringer Ingelheim) and 

mounted in the stereotactic apparatus. Skin on the head was incised and a whole 

was drilled at the following coordinates: +1 mm anterior-posterior (AP), -1.5 mm 

medial-lateral (ML), -3 mm dorsal-ventral (DV). Next, using a Hamilton syringe a 

single cell suspension (80 000 cells in culture medium) or culture medium (for 

sham operated animals) were injected in the total volume of 1 µL at the rate of 

0.25 µL/min to the right striatum. The syringe was withdrawn at the rate of 1 

mm/min to prevent backward outflow of the cell suspension. Next, the incision 

was closed, animal was weighed and monitored until full recovery from the 

anesthesia.  

3.5 Tissue Dissociation 

Tissue dissociation was performed by Dr. Anna Lenkiewicz. Sham animals 

(controls), and mice 21 days post-implantation with a confirmed tumor presence 

were perfused transcardially with ice-cold phosphate-buffered saline (PBS; 

14190-136), in order to remove blood cells from the brain. Next, brains were 

dissected and tumor-bearing hemispheres or whole brains (controls) were 

dissociated enzymatically. The dissociation was performed with 0.5 mg/mL 

DNase I (DN25, Sigma-Aldrich) in DMEM (Gibco, Germany) in order to preserve 

the Tmem119 epitopes. Up to 400 µg of tissue was cut into small pieces with a 

scalpel, suspended in 2 mL of DNaseI enzyme mix (0.5 mg/mL in DMEM) and 

transferred to C-tubes (Miltenyi Biotec; 130-093-237). Next tissue was 

dissociated with GentleMACS Octo Dissociator (Miltenyi Biotec) and 

37C_NTDK_1 program. Following the enzymatic digestion, 3 mL of the Hank’s 
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Balanced Salt Solution with calcium and magnesium (HBSS; Sigma-Aldrich; 

55037C) was added to stop the enzymatic reaction. The cell suspension was 

passed through a 70 µm and 40 µm strainer (Greiner bio-one), washed with 

HBSS and centrifuged at 300 g, 4 °C for 10 min. For myelin removal, the pellet 

was suspended in 25 mL cold Percoll gradient (18.9 mL gradient buffer 

containing 5.65 mM NaH2PO4H2O, 20 mM Na2HPO42(H2O), 135 mM NaCl, 5 

mM KCl, 10 mM glucose, 7.4 pH; 5.5 mL Percoll (Cytiva; 17089102)), overlay 

with 5 mL of cold PBS and centrifuged for 20 min at 950 x g and 4°C, without 

acceleration and brakes. Following centrifugation, the myelin layer was carefully 

removed from the interface of PBS layer and bottom layer and the remaining 

supernatant was removed. Cell pellet was resuspended with PBS, and cells 

counted with quantified using an NucleoCounter® NC-200 (ChemoMetec). 

3.3. Fluorescence activated cell sorting (FACS) for CITE-seq  

FACS was performed by Dr. Salwador Cyranowski. Directly after 

dissociation, cells were centrifuged at 300 x g, 4°C for 10 min and the pellet was 

suspended in 50 µL of anti-mouse CD16/CD32 Fc Block™ (BD Pharmingen) 

1:250, in order to block an nonspecific antibody binding. During 10 min incubation 

of cells in 4°C, the antibody cocktail containing the CITE-seq antibody panel and 

cell hashing Ab-oligo conjugates was prepared. Briefly, a proper amount of 

antibodies was mixed (0.25 µL of each per sample) with Stain Buffer (BD 

Pharmingen; 554656) up to 52.5 µL. Next, the antibody mix was aliquoted into 

50 µL portions and a sample-specific cell hashing Ab-oligo (Key Resource Table) 

was added. The antibody cocktails were centrifuged at 14,000 x g, 4°C for 10 

min. Next, supernatants from each Ab-oligo cocktail mix and anti-mouse CD11b 

antibody (1:200, M1/70, BD Pharmingen), and anti-mouse CD45 antibody (1:200, 

30-F11, BD Pharmingen) were added to the appropriate cell pellet and incubated 

for 30 min at 4 °C, protected from light. Cells were washed twice with Stain Buffer 

and stained with Live Dead Fixable Violet Dead Cell Stain (ThermoFisher) 1:1000 

in PBS. After 10 min incubation at 4°C, cells were washed twice with Stain Buffer 

(BD Pharmingen) and sorted with dead cell exclusion to 20% FBS in PBS. The 

sorting was stopped after reaching 50,000-80,000 cells per sample.  



 
 

42 
 

3.4. Cellular Indexing of Transcriptomes and Epitopes by 
sequencing (CITE-seq) 

CITE-seq was performed by Dr. Anna Lenkiewicz. After sorting, the 

CD45+ cell suspensions containing an equal number of cells in each sample 

were pooled and centrifuged at 500 x g, 4 °C for 10 min. Each pool consisted of 

a sample from each tested condition, and replicates were separated between 

different pools in order to control for a batch effect. Next, cells were suspended 

100 µL PBS and filtered through 40 µm Flowmi™ cell strainers (Scienceware). 

Cell density and viability were verified with an EVE™ Automatic Cell Counter 

(NanoEnTek Inc., USA), and if needed the cell suspension was diluted to a cell 

density of 2,000 – 10,000 cells/µl. Sample pools were run in triplicates, each 

replicate was loaded onto a separate chip well (Chip G, 10x Genomics). 

Subsequently, cell encapsulation and library preparation was performed with 

Chromium Controller (10x Genomics) and Chromium Next GEM Single Cell 3’ 

Reagent Kit v3.1 with Feature Barcoding technology for Cell Surface Protein (10x 

Genomics) according to the producer’s user guide (CG000206 Rev D). The 

library quality and quantity were assessed with a High-Sensitivity DNA Kit 

(Agilent Technologies, USA) on a 2100 Bioanalyzer (Agilent Technologies, USA). 

Sequencing was run on Novaseq 6000 (Illumina), pair-end (Read 1–28 bp, Read 

2-100 bp). The sequencing depth was targeted to 4 x 104 mRNA reads and 7 x 

103 Ab-oligo reads per cell.      

3.5. Visium spatial transcriptomics 

Visium spatial transcriptomics was performed by Dr. Anna Lenkiewicz. 

Mice were anesthetized and sacrificed by perfusion with 4% PFA in PBS. Brains 

from naïve mice [n=2],glioma bearing brains with: GL261 tdTomato+luc+, NRAS; 

shTP53-GFP; shATRX; wt IDH1 and PDGFB; shTP53; shATRX; Ink4a; Arf-/-;  wt 

IDH1 were harvested 21 days after implantation of the cells [n=2 mice/group], 

while GBM mice models with NRAS; shTP53-GFP; shATRX; mtIDH1 (R132H) 

and PDGFB; shTP53; shATRX; Ink4a; Arf-/-; mt IDH1 (R132H) were harvested 

14 days after implantation of the cells [2 different mice /group].Brains were snap-

frozen in tissue freezing medium (Leica Biosystems, 14020108926) on dry 

ice.  Brains were sectioned coronally to 10μm on a cryostat (Thermo Scientific, 
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Microm HM525) at -20°C and mounted onto the etched fiducial frames of Visium 

Tissue Optimization Slide according to the Tissue Preparation Guide 

(CG000240, Rev E, 10X Genomics). Slides with the sections were fixed with pre-

chilled methanol at -20°C for 30min. Hematoxilin-eosin (H&E) staining was 

performed according to the staining protocol, and sections were reviewed in 

bright-field under a Leica DM4000B microscope according to imaging guidelines 

(CG1000160, CG000241, 10X Genomics). First, sections were permeabilized 

with Permeabilization Enzyme for different time to establish the best time point. 

The released mRNA was captured by probes on the slides, and reverse 

transcribed to cDNA marked by fluorescently labeled nucleotides. Tissue was 

then removed from the slides with a digestive enzyme, leaving the fluorescently 

labeled cDNA, which was visualized under a Leica DM4000B microscope 

according to Tissue Optimization Guide (CG000238 Rev E, 10X Genomics). 

Based on the signal intensity, the optimal permeabilization duration established 

for mice brain tumor samples was 26 min. Total RNA was extracted from frozen 

tumors using the RNeasy Kits according to the manufacturer’s instructions 

(Qiagen). The sizing, quantitation, integrity and purity of all samples were 

measured using the 2100 Bioanalyzer instrument (Agilent). RNA isolated from 

the sections had an RNA integrity level >8. RNA was eluted in 50 ml RNase-free 

water and stored at –80°C until transcriptome profiling.:  

Visium spatial gene expression slides and reagents kits were used 

according to manufacturer instructions (10X Genomics). Each capture area (6.5 

x 6.5 mm2) contains 5,000 barcoded spots that are 55 mm in diameter (100 mm 

center to center between spots) providing an average resolution of 1 to 10 cells 

and up to 100 cells inside the frame areas). Sections were methanol fixed at −20 

°C for 30 min and stained for H&E for general morphological analyses and spatial 

alignment of sequencing data. After bright-field imaging, brain sections were 

enzymatically permeabilized for 24 min, poly-A mRNA captured on each of the 

spots on the capture area and spatial barcodes and unique molecular identifiers 

were added to the reads, according to Visium Spatial Gene Expression User 

Guide (CG000239, Rev G, 10X Genomics). Libraries were prepared with Truseq 

Illumina libraries and sequenced on a NovaSeq 6000 (Illumina) at a minimum 

sequencing depth of 50,000 read pairs per spatial spot by Integragen (Evry). 

Sequencing was performed with the recommended protocol (read 1: 28 cycles; 
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i7 index read: 10 cycles; i5 index read: 10 cycles; and read 2: 50 cycles), yielding 

between 150 million and 224 million sequenced reads. The eight dual-index 

Illumina paired-end libraries were sequenced on a NovaSeq 6000 on an S2 100-

cycle flow cell. 

3.6. Single-cell RNA data preprocessing and filtering 

After sequencing, raw sequencing data (BCL files) were converted to 

FASTQ files using the mkfastq function from the CellRanger v7.0.1 package. The 

sequencing reads were then mapped to the mouse genome GRCm39 (mm10), 

obtained from the 10X Genomics website, and quantified using the count function 

from CellRanger v7.0.1. 

Subsequent data analysis was conducted in R v4.2.2 using Seurat v4.3. 

All samples were merged into a single dataset and normalized using the 

Seurat::SCTransform function with the parameter vst.flavor = "v2". The dataset 

was then filtered to remove low-quality data; cells with a percentage of 

mitochondrial reads greater than 5.5%, fewer than 200 unique genes, or a 

percentage of ribosomal reads less than 3.5% were excluded. Additionally, 

genes expressed in fewer than 20 cells were discarded. Potential doublets and 

multiplets were identified using DoubletFinder v2.0.3 and subsequently removed. 

3.7. Clustering of major cell types in scRNA-seq  

Clustering of the major cell types in the scRNA-seq data was performed 

by merging all samples, as no visible batch effect was observed. The merged 

expression matrix was normalized using the Seurat::SCTransform function with 

the parameter vst.flavor = "v2" [80]. Highly variable genes were identified using 

the Seurat::FindVariableFeatures function, which models the mean-variance 

relationship of the normalized counts of each gene across cells, identifying 2,000 

genes per sample. 

Principal components were determined using RunPCA on these 2,000 

highly variable genes. The optimal number of principal components for UMAP 

and clustering was selected using ElbowPlot. For each cell, its closest neighbors 

were calculated using the Seurat::FindNeighbors function with the first 40 

principal components (PCs). Visualization in 2D space was achieved using 

UMAP, also based on the first 40 PCs. Clustering analysis was conducted using 
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the Seurat::FindClusters function with the Leiden algorithm with parameter 

resolution=0.5.  

3.8. Assignment of cell type annotations to clusters 

To annotate a major cell type of each single cell, the 

Seurat::FindAllMarkers function with the following parameters: min.pct = 0.2, 

average log fold-change = 1, and only.pos = TRUE was used. This function 

identified differentially expressed genes in each cluster using the Wilcoxon rank-

sum test statistical framework. The top 30 most significant differentially 

expressed genes (ranked by average log-transformed fold change; adjusted 

P < 0.05) were carefully reviewed. 

Additionally, each cluster were cross-verified using known canonical 

markers. Label transfer from a publicly available datasets using the 

Seurat::TransferData function to assist in cluster annotation was applied. By 

integrating these three approaches, the major cell types for each cluster were 

inferred. 

3.9. Cell cycle analysis 

The Seurat::CellCycleScoring function from the Seurat package, which is 

based on cell cycle phase genes was used as described in [81]. Each cell was 

assigned a quantitative score for the G1, G2/M, and S phases based on the 

expression levels of marker genes specific to each stage of the cell cycle. 

3.10. Analysis of the gene signature 

Lists of genes for various cell activity scores was curated through 

extensive literature review. 

For macrophages, genes associated with different functional states were 

included. The maturity score is made of Plac8, Ccr2, Cd63, Adgre1, Itgam [82]. 

The hypoxia score comprises Vegfa, Slc2a1, Hk2, Hilpda, Eno1, Bnip3, and Hif1a 

[83]. For phagocytosis-related activity, the genes Apoe, Fabp5, Gpnmb, Spp1, 

Cd206, and Lgals3 were selected [84]. The proinflammatory state is 

characterized by the expression of Tnf, Nos2, Stat1, Ass1, Ptgs2, Ifitm1, Il1b 

and  Il6 [85] [86] and, while the anti-inflammatory state is associated with Arg1, 

Vegfa, Tgfb1, Mif, Il10, Cd274, and Pdcd1lg2 [85] [86]. Moreover, the 
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proinflammatory transcription factor score was derived from genes Stat1, Stat5a, 

Rela, Nfkb1, Irf9, Irf5, and Irf3 [87] [85] [88]. 

For T cells, genes linked to T cell exhaustion (TEF and Th1), such as 

Pdcd1, Ctla4, Havcr2, and Lag3, which are recognized markers of exhaustion 

were included [43]. The TEF activity score was curated using Prf1, Gzmb, and 

Fasl [31]. 

For natural killer (NK) cells, maturity was assessed using genes such as 

Itgam, Spn, Itga2, Klrg1, Cd27, Plcg1, and Klrb1c [89]. To evaluate NK cell 

antitumor responses, genes such as Gzma, Gzmb, Ncr1, Fasl, Ifng, and Prf1 

were utilized [90]. 

These scores were computed using the Seurat::AddModuleScore function 

from the Seurat package. The results were visualized with the Seurat::VlnPlot 

function, with mean values computed using the ggplot2::stat_summary function 

or visualized using Seurat::FeaturePlot. 

3.11. Analysis of population proportions 

To normalize and compare cell percentages across different conditions, a 

custom R function designed to ensure accurate representation of cell proportions 

was used. This involved calculating a total number of cells per condition, and 

adjusting the cell counts for each cluster accordingly. The normalization process 

equalized cell counts across conditions by scaling them to the overall sum of 

cells, enabling a fair comparison. Normalized data were visualized using mosaic 

plots, which displayed the proportions of cells across clusters and conditions. 

These plots were customized with colors and statistical annotations to provide 

clear comparisons, with the y-axis representing normalized proportions and the 

x-axis representing cell clusters and number of cells in the population. To 

determine if there were significant differences in cell distributions among all 

conditions across the entire dataset, the Chi-square test for independence 

(stats::chisq.test) was employed. Upon identifying global differences, within-

cluster analyses were conducted to check for significant variations between 

conditions in each cluster. This was achieved by performing one-way ANOVA 

(stats::aov) to test for significant differences in cell proportions between 

conditions within each population. 
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3.12. Statistical analysis 

To assess the statistical significance of differences between the two 

conditions (IDH1wt and IDH1mt), I conducted a pairwise statistical analysis using 

a two-tailed independent samples t-test. Specifically, the stats::t.test function in 

R, employing Welch's t-test to account for unequal variances were used where 

necessary. A significant t-test result (p-value < 0.05) indicated a difference in 

group means. The bar plots (Figures E and F) display mean values with error 

bars representing the standard error of the mean, calculated using the 

ggplot2::stat_summary function. Significant differences between the two 

conditions are indicated with asterisks (*). 

3.13. Visium spatial transcriptomics data preprocessing 

Raw FASTQ files were aligned to the mouse reference genome Cell 

Ranger mm10 (refdata-gex-mm10-2020-A available 

at:  https://cf.10xgenomics.com/supp/spatial-exp/refdata-gex-mm10-2020-

A.tar.gz .) and images detected using SpaceRanger (v1.2.0). Low quality spots 

were removed based on a number of reads < 400 and a number of unique genes 

< 200. Data was integrated using the RPCA approach from the Seurat package, 

using the first 20 PCs and parameter k.anchor=5. Integrated data was scaled, 

and dimensionality reduction was first performed with a PCA, dimensions 

significantly different from random noise were selected with Marchenko-Pastur 

algorithm 29 and subsequently were subject to UMAP. Subsequently, spots were 

clustered, using the Louvain algorithm. Based on clustering, tumor core, 

periphery and border regions were annotated.  

3.14. Deconvolution analysis 

To perform deconvolution on GL261 data, RCTD algorithm from spacexr 

v2.0.0 package [79] using a custom-built single-cell reference (FIG 1S_2) was 

employed. Reference was built by integrating GL261 scRNA-seq data from 

[91](GSE158016) with CD45+ scRNA-seq from this publication, using the RPCA 

approach from the Seurat package. Cell type spatial density was calculated and 

visualized using SPATA2 v0.1.0 package [92]. 

Since a complete reference dataset for the IDH1wt/mt cell lines was not available, 
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the immune cell type density was estimated using the ModuleScore function from 

the Seurat package. Leveraging our scRNA-seq data, genes with expression 

patterns that were predominantly specific to major cell types were selected:  

• for microglia, Tmem119, P2ry12, Cx3cr1, and Siglech; 

• for macrophages, Ly6c2, Ms4a6d, Nos2, Arg1, Ms4a7, Lgals3, Il1b, 

Ms4a6c, Ms4a4c, Ly6i, and Plac6;  

•  for T cells, Cd3d, Cd4, Cd8a, Gzma, Gzmb, Gzmc, Gzmk, Prf1, Lta, Ltb, 

Ifng, and Fasl. 
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4. Results 

4.1. Dissecting the immune microenvironment of  GL261 murine 
gliomas using CITE-seq and Visium spatial transcriptomics 

To investigate the immune microenvironment of experimental GL261  

gliomas, a comprehensive cellular profiling of CD45+ glioma infiltrate was 

conducted. This involved CITE-seq analysis with a panel of 45 antibodies on 

immunosorted CD45+ cells collected from brains of sham-operated (n=9) and 

GL261 glioma-bearing mice (n=11) at 21 days post-implantation as depicted in 

the Figure 1.1A (experiments were conducted by Dr. Anna Lenkiewicz). 

Fig. 1.1. Immune landscape of GL261 gliomas. 
A) Scheme of the workflow of an integrated analysis of murine GL261 gliomas created 
using elements adapted from BioRender.com.  B) Heatmap of cell type/state marker 
genes expression of myeloid lineage populations. C)  Heatmap of cell type/state marker 
genes expression of lymphoid lineage populations.  
 

Subsequently, a combination of UMAP for dimensionality reduction and 

Weighted-Nearest Neighbor (WNN) clustering employing the Leiden algorithm 

was applied to the data. This approach enabled the identification of 34 distinct  
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Fig. 1.2. Immune landscape of GL261 gliomas. 

A) wnnUMAP visualization of scRNA-seq data from CD45+ cells, color coded for cell 
types based on the expression of cell type-enriched gene signatures. B) Pie chart of 
proportions of cell types in a given condition. 

 

clusters based on RNA expression profiles and protein levels, as depicted in 

the Figure 1.1B. Cell identity within these clusters was determined based on a 

literature-based immune marker set [85][89][93][94] and the expression of top 

differentially expressed genes. In the myeloid lineage, a variety of cell 
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populations described previously [94] were identified and some new 

subpopulations emerged thanks to the expanded antibody panel. These 

included eighteen distinct populations such as homeostatic microglia 

(Tmem119hi),  activated microglia (Tmem119hi, Stat1hi), phagocytic microglia 

(Tmem119hi, Spp1hi), proliferating microglia – prolif MG (Tmem119hi, Mki67hi), 

CNS border associated macrophages – BAM (Pf4hi), non-classical Monocytes 

(Cd14hi, Acehi), monocytes – Mo (Cd14hi,Ccr2hi), intermediate monocytes-

macrophages (Cd14hi, Ccr2med, Ly6ihi), immunosuppressive macrophages – 

immunosuppr Mph (Cd14hi, Arg1hi), phagocytic macrophages (Cd14hi, 

Gpnmbhi), monocyte-derived dendritic cells – moDC (Ccr2med), conventional 

dendritic cells type 1 – cDC1 (Xcr1hi),  conventional dendritic cells type 2 – 

cDC2 (Sirpahi), migratory dendritic cells – migDC (Ccr7hi)[95], plasmacytoid 

dendritic cells – pDC ( Siglechhi), neutrophils (Ly6ghi),  eosinophils (Ccr3hi) and 

mast cells (Kithi).  

The lymphoid lineage was equally diverse, with sixteen differentiated cell 

states including naive CD8+ T cells (Cd3d+, CD8a+, Sellhi, Cd44-), central 

memory CD8+ T cells – CD8+ CM (Cd3d+, CD8a+, Sellhi, Cd44+), effector CD8+ 

T cell 1 – CD8+ Teff1 (Cd3d+, CD8a+, Gzmmed,  Pdcd1low), effector CD8+ T cells 

2 (Cd3d+, CD8a+, Gzmhi,  Pdcd1med), CD8+ exhausted T cell progenitors 

(Cd3d+, CD8a+, Gzmmed,  Pdcd1med, Mki67hi), CD8+ exhausted T cells (Cd3d+, 

CD8a+, Gzmlow,  Pdcd1high),  natural killer T cells – NKT (Cd3d+, Cd4-, Cd8a-, 

Klrb1c+), naive CD4+ T cells (Cd3d+, Cd4+, Sellhi, Cd44-), early CD4+ T cells – 

early CD4+ (Cd4+ , Selllow, Ifnglow), T helper cell type 1 – Th1 (Cd4+ , Ifnghi), 

regulatory T cells – Treg (Cd4+ , Foxp3hi), T helper cell 17 – Th17 (Cd3d+, 

Il17ahi), B cells (Cd19+),  premature natural killer cells – premature NK (Cd3d-, 

Klrb1c+, Itgamlow), mature natural killer cells (Cd3d-, Klrb1c+, Itgamhi), glioma 

associated natural killer cells – GANK (Cd3d-, Klrb1c+, Cxcr4hi, Klrg1low) (Figures 

1.1C, 1.2A). The tumor-bearing brains demonstrated a substantial increase in 

both innate and adaptive immunity cells, in contrast to the predominantly 

homeostatic microglia and CNS border-associated macrophages observed in 

healthy brain tissue (Figure 1.2B). 
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Glioblastoma is characterized by an extensive transcriptional 

heterogeneity, influenced by regional metabolic differences and the composition 

of the tumor microenvironment [17]. To explore the spatial distribution of immune 

populations, spatially resolved transcriptomic RNA sequencing was performed 

using the 10x Visium platform. Tissue samples for this analysis were obtained 

from both healthy mice (n=2) and GL261 glioma-bearing mice (n=2)  

(experiments were conducted by Dr. Mitrajit Ghosh and Msc Paulina Pilanc).  

 

Fig. 2. Visium spatial transcriptomics demonstrates spatial cell heterogeneity in 

GL261 gliomas.  

Spatial Plots of all samples, color coded to unsupervised clustering results overlapped 
with H&E staining photo. Tissue samples for this analysis were obtained from both sham 
-operated mice (n=2) and GL261 glioma-bearing mice (n=2). 

 

The obtained dataset encompassed a total of 9647 sequenced spots, as 

shown in the Figure 2. These spots were clustered using the Leiden algorithm, 

enabling the delineation of main tumor regions (tumor core, periphery, and 

border) and 24 distinct clusters representing healthy brain structures (Figure 2). 

To improve our understanding of cell type distribution, Robust Cell Type 

Deconvolution was applied using our scRNAseq dataset combined with the 

publicly available GL261 scRNA-seq data as a reference. This analysis facilitated 
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the spatial localization of the main leukocyte populations, revealing their high 

specificity to spatial locations in the glioma microenvironment. 

4.2.  Characterization of macrophage subpopulations in the high 
grade glioma microenvironment 

In the glioma TME, bone marrow-derived myeloid cells exhibit diverse 

differentiation stages from monocytes to macrophages [96]. To characterize the 

role of distinct subpopulations in pathogenic processes in glioblastoma 

progression, Module Scoring and Differential Expression Analysis was performed 

on these cells. The analysis revealed the presence of four distinct subpopulations 

within the glioma TME: newly infiltrated monocytes, intermediate monocytes-

macrophages, phagocytic macrophages, and immunosuppressive 

macrophages, as depicted in Figures 3.1A-B.  

We determined the optimal number of clusters through a comprehensive 

expert evaluation of Differentially Expressed Gene (DEG) profiles, which 

suggested a lower cluster count than the previously proposed by transcriptional 

profiling studies (e.g., Pombo-Antunes, Scheyltjens, Lodi et al. [112]). To 

objectively validate this finding, we conducted a Clustering Deviation Index (CDI) 

analysis, a robust metric for assessing cluster stability and biological relevance. 

The CDI analysis confirmed our interpretation, yielding the highest score at a 

resolution corresponding to four distinct clusters (Figure 3.1C). To assess their 

phenotypic characteristics, five gene scores based on gene expression were 

applied: hypoxia score (including markers such as Hilpda, Eno1, Bnip3), maturity 

score (Ly6c, Adgre1, Itgam), phagocytosis score (Fabp5, Gpnmb, Spp1), pro-

inflammatory score (Stat1, Nos2, Tnf), and anti-inflammatory score (Stat3, Arg1, 

Tgfb1) as illustrated in the Figure 3.1F. 

Newly infiltrated monocytes exhibited low scores across all modules, 

indicating the early onset of their differentiation process. Intermediate monocyte-

macrophages (Mo-Mph) maintain pro-inflammatory properties but had yet to fully 

develop phagocytic and antigen-presenting capabilities, a crucial step for 

reaching their anti-tumor potential [97]. 
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Fig. 3.1. Functional heterogeneity of macrophages  

A) UMAP visualization of isolated monocyte-macrophages populations among CD45+ 
cells from GL261 glioma bearing hemispheres. B) Stacked barplot showing proportions 
of Mo/Mph populations. C) Plot showing clustering quality score values for given 
clustering resolution of Mo/Mph. D) UMAP visualization of Slingshot Pseudotime 
Analysis. Dark blue indicates the least mature cells, when deep red indicates fully mature 
cells. E) UMAP plot showing maturity score values. F) Violin plots showing hypoxia, 
maturity, phagocytosis and pro/anti-inflammatory score values in a given cell state. G) 
Dotplot showing Gene Set Enrichment Analysis (GSEA) executed on KEGG pathways 
results. Red Normalized Enrichment Score (NES) values indicate upregulation of a given 
gene set in a specific population, while blue values indicate downregulation. Dot size 
corresponds to adjusted p-value (padj).  

 

 After the clustering analysis we obtained two more differentiated 

subpopulations of immunosuppressive and phagocytic macrophages. To 
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determine whether phagocytic macrophages represent an intermediate or a 

distinct mature macrophage state, a Slingshot Trajectory Analysis was performed 

and the results indicate that phagocytic macrophages represent a distinct, 

mature cell state in glioblastoma (Figure 3.1D-E). Phagocytic and 

immunosuppressive macrophages showed distinct phenotypes: a higher 

phagocytosis and elevated proinflammatory and anti-inflammatory scores, 

respectively, indicating their mature state. Phagocytosis plays a vital role in the 

anti-tumor response, facilitating the elimination of tumor cells and the 

presentation of tumor-derived antigens via MHC II. However, it also potentially 

supports tumor cell invasion [98]. 

Gene set enrichment analysis using the fGSEA method supported these 

findings, highlighting gene sets such as Antigen Processing and Presentation, 

Toll/Nod Like Receptor Signaling, and JAK-STAT Signaling atop the Normalized 

Enrichment Score list (Figure 3.1G). Monocytes show higher expression of genes 

from Antigen Processing and Presentation, Toll/Nod Like Receptor Signaling 

gene sets than other subpopulations. Notably, intermediate Mo-Mph exhibited 

metabolic pathways akin to M1-like macrophages, characterized by a high 

glycolysis score, and low oxidative phosphorylation and fatty acid metabolism 

levels. However, signs of reprogramming towards an anti-inflammatory 

phenotype were evident even at this stage, marked by increased hypoxia and 

anti-inflammatory scores, and elevated levels of Stat3 expression, key regulator 

of macrophage phenotype [99]. This reprograming is crucial for antigen-

presenting cells (APC)-oriented immunotherapy, given these cells’ potential to 

evolve into fully functional inflammatory (M1) APCs, as indicated by high Stat1 

expression and regulon score (Figure 3.2A). The STAT3 activity score, 

calculated based on expression of regulon genes as described in Holland et al. 

[100], was also elevated, hinting that STAT3 acts as an active protein (Figure 

3.2B).  
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Fig. 3.2. Functional heterogeneity of macrophages 
  

A-B) Scatter plot Stat1/3 expression and the respective STAT1 or STAT3 regulon activity 
score. Single points correspond to a single cell, color coded to the corresponding 
population. C) Heatmap showing Z-score normalized (in column) values of a regulon 
activity of different transcription factors in Mo/Mph subpopulations. Regulon activities 
were calculated using DoRothEA DB and viper algorithm. D) Spatial plots showing 
density of given Mo/Mph subpopulation obtained by RCTD deconvolution of the GL261 
glioma sample.  
 

Spatial transcriptomics data from GL261 gliomas were subjected to spot 

deconvolution using Robust Cell Type Decomposition (RCTD) [79]. Reference 

was built by integrating GL261 scRNA-seq data with CD45+ scRNA-seq from 

[91] (GSE158016) using the RPCA in the Seurat package. Cell type spatial 

density was calculated and visualized using SPATA2 v0.1.0 package [92]. 

By employing scRNA-seq data from the analysis of myeloid cell presented above, 

gene scores were used to locate various Mo/Mph subpopulations. Monocytic 

cells are detected in specific areas of the tumor core. Interestingly, phagocytic 

and immunosuppressive Mph are located in various tumor areas (Figure 3.2D).  

Overall, these findings demonstrate that GL261 gliomas hosts a broad spectrum 

of with varied phenotypes and underlying transcription factors, as shown in the 
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Figure 3.2C. This heterogeneity suggests that these populations may be 

localization-dependent, creating diverse spatial niches within the GL261 gliomas 

microenvironment.  

4.3. T cell diversity and NK Cell Characterization in the GL261 
glioma microenvironment 

To investigate the diversity of T cells within the glioma microenvironment, 

a weighted-nearest neighbor (WNN) Leiden clustering was employed for 

determining CD3+ T cells identity. The cell types were then classified based on 

their marker gene profiles, as illustrated in Figures 1.1C and 1.2A. Through this 

method, six CD8+, four CD4+, and one natural killer T (NKT) cell clusters were 

identified. 

The CD4+ T cell population comprised three classical types: naive CD4+ 

T cells (constituting 32% of the CD3+ population), regulatory T cells (7%), and 

helper T cells type 1 (15%). Additionally, a less-studied early CD4+ T cells 

population was annotated, which was characterized by a low expression of 

homing genes (Ccr7, Sell), low expression of activation marker gene Il2ra, and 

medium expression  of the antigen experience marker gene Cd44 and naive T 

cell transcription factor Klf2 responsible for their migration [101] (Figure 4.1A). 

GSEA analysis indicated that this population had not activated oxidative 

phosphorylation despite upregulation of the T Cell Receptor Signaling Pathway 

compared to the naive CD4+ cluster (Figure 4.1E), suggesting that it is an 

intermediary cell state rather than a distinct cell type. 
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Fig.4.1. Cellular and functional heterogeneity of lymphoid infiltrates in GL261.  

A)  UMAP visualization of T cell populations from GL261 glioma bearing hemispheres.  
B) Stacked barplot showing proportions of CD8+ T cell populations. C) Heatmap 
showing Z-score normalized (in column) values of regulon activity of transcription 
factors differently operating between T cell subpopulations Regulon activities were 
calculated using DoRothEA DB and viper algorithm. D) UMAP plots showing cytotoxic, 
exhaustion and tumor-reactivity score values. E) Dotplot showing GSEA executed on 
KEGG pathway results. Red Normalized Enrichment Score (NES) values indicate 
upregulation of a given gene set in a specific subpopulation, while blue values indicate 
downregulation. Dot size corresponds to adjusted p-value (padj). 
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The highly heterogeneous CD8+ population represents almost half of all CD3+ 

cells, with effector T cells constituting 71% of it (Figure 4.1B). The four effector 

clusters consist of: 1) CD8+ Teff1, a not yet full activated CD8+ effector T cells 

1 – characterized by a low expression of Il2ra, medium Klf2 and low expression 

of genes coding cytotoxic molecules; 2) CD8+ Teff2, fully activated CD8+ effector 

T cells 2 – which express medium levels of cytotoxic and exhaustion  molecules; 

3) CD8+ Tex progenitor, CD8+ exhausted T cells progenitors – which closely 

resemble CD8+ Teff2, but have high proliferation score; 4) CD8+ Tex, exhausted 

CD8+ T cells – characterized by the highest expression of cytotoxicity and 

exhaustion. 

To get more insights into molecular processes underpinning the observed 

functional changes in lymphocytes, the regulon activity of transcription factors 

differently operating between T cell subpopulations were estimated. Regulon 

activities were calculated using DoRothEA DB and viper algorithm, and are 

presented as a heatmap CD8+Tex cells show upregulation of different 

transcription factors than CD8+Teff1 cells (Figure 4.1C). 

Both CD8+ Teff1 and Teff2 contain a subpopulation of non-exhausted 

Pdcd1low, Tcf7hi, Tbx21hi, Toxlow cells. The Teff2 cells differentiate into Pdcd1hi, 

Tbx21hi, Tcf7low, Toxlow, Slamf7hi, when the Teff1 into  Pdcd1hi, Tbx21low, Tcf7low, 

Toxhi, Slamf6low  terminally exhausted T cells (Figure 4.1D) [43] [102] [103].  

The GSEA analysis indicates that this population had not activated 

oxidative phosphorylation despite upregulation of the T Cell Receptor Signaling 

Pathway compared to the naive CD4+ cluster (Figure 4E), suggesting that it is 

an intermediary cell state rather than a distinct cell type. Most of the lymphoid 

subpopulations show upregulated expression of genes related to focal adhesion, 

ECM (extracellular matrix) receptor interactions, cell adhesion molecules (CAMs) 

reflecting processes of the extravasation of cells from the vessels and migration 

of the lymphocytes into the tumor. Genes involved in cytokine-cytokine receptor 

interactions are upregulated in most subpopulations expect CD8+Teff2 and 

CD8+Tex progenitors (Figure 4E). These intricate differentiation pathways 

highlight the complexity of T cell responses in the glioblastoma microenvironment 

and underscore the potential for targeted immunotherapeutic strategies. 
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The field of NK cell-based cancer therapy has grown exponentially and 

currently constitutes a major area of immunotherapy innovation. As 

glioblastomas express variable amounts of HLA-I, it is possible to select patients 

with favorable prognostic responses to NK cell-based immunotherapies [106] 

[107].  Our WNN clustering analysis identified three distinct NK cell populations 

within the GBM: premature NK cells (35%), mature NK cells (27%), and 

glioblastoma-associated NK cells (GANK) (38%) (Figures 4.2A-B). The GANK 

population is particularly intriguing, as it displayed the low maturity score and 

varying antitumor response levels (Figure. 4.2.D). Slingshot trajectory analysis 

suggested that GANKs represent an independent cell state (Figure 4.2.A). The 

Venn diagram shows that genes upregulated in mature NK cells and GANKs are 

distinct indicating a specific reprogramming of NK cells by glioblastoma cells that 

disrupts their maturation and diminishes their cytotoxic potential (Figure 4.2C).  

The transcription factor repertoire differed significantly between mature 

NK cells and GANKs, with the former upregulating genes coding for factors 

necessary for a cytotoxic response (Stat4, Hsf1, Stat5a, Nfyc, Cebpa) and the 

latter showing elevated expression of genes coding for anti-inflammatory 

transcription factors (Jun, Rel, Foxo3, Smad4) (Figure 4E). This finding was 

corroborated by gene expression analysis, revealing low activity of 

proinflammatory STAT4 and an inverse relationship between STAT5 activity and 

the expression of anti-inflammatory genes such as Vegfa and Tgfb1 in GANKs 

(Figure 4.2F, transcription factors in bold letters) [108]. Moreover, the observed 

high expression of Cxcr4 in GANKs, known for its role in guiding NK cells to 

tumors [107] [109], along with their increased presence in the tumor core relative 

to mature NK cells, suggests a potential association with glioma-induced 

reprograming (Figures 4.2G-H). 
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Fig.4.2. Cellular and functional heterogeneity of lymphoid infiltrates in GL261.  
A) UMAP visualization of Slingshot Pseudotime Analysis showing two distinct 

trajectories of NK cell differentiation obtained during unsupervised analysis. B) Stacked 

barplot showing proportions of NK cell populations. C) Venn diagram showing examples 
and numbers of differentially expressed genes (calculated on all 3 subpopulations) 
between mature NK and glioma associated NK cells (GANK). D) UMAP plots showing 
maturity and antitumor response score values. E)  Heatmap showing Z-score normalized 
(in column) values of regulon activity of differently active between NK cell populations 
transcription factors. F) Heatmap showing STAT4 and STAT5a/b regulon activity score 
and expression of genes , which are regulated by a given transcription factor. Values 
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are normalized with Z-score in columns. G) Stacked barplots showing proportions of NK 
cell subpopulations in a given tumor region. H) Violin plot showing expression levels of 
Cxcr4 in NK cell subpopulations.  

4.4. Analysis of ligand-receptor interactions between lymphoid and 
myeloid populations 

To understand the complex interplay between lymphoid and myeloid 

populations in the glioblastoma microenvironment, a ligand-receptor analysis 

was conducted. To simplify the complexity of the analysis, the number of 

populations was redefined and they were grouped them into new clusters as 

shown in the Figure 5A. This analysis was facilitated by the use of the CellChat 

package, with the resulting cell pairs categorized into functional groups (Figure 

5B).  

We found significant differences in chemokine receptor patterns among 

lymphoid populations. In CD8+ effector T cells (CD8+ Teff), most interactions 

were mediated by CXCL subclass chemokines, whereas NK cells predominantly 

interacted through CCL subclass chemokines. Tregs exhibited a broad range of 

chemokine receptors, engaging potently with both CXCL and CCL subclass 

chemokines. However, for the Th1 cluster, only the Cxcl16-Cxcr6 interaction was 

statistically significant. Notably, microglia emerged as the primary source of 

chemokines targeting lymphoid cells, while dendritic cells were the least active in 

this regard (Figure 5B). 

To further analyze the ligand-receptor interactions, we performed CellCall 

ligand-receptor analysis, which integrate paired ligand-receptor and transcription 

factor activity using also an embedded pathway activity analysis to identify the 

significantly activated pathways involved in crosstalk between cell types. The 

analysis showed that almost all chemokine ligand-receptor pairs are significant, 

with CCL subclass chemokines primarily activating the RelA transcription factor 

and CXCL subclass chemokines predominantly activating STAT3 transcription 

factor. Additionally, Jag1, a ligand for Notch1 and Notch2 receptors, which are 

vital for an effective anti-tumor response [110], emerged as a major contributor 

to signal transduction, leading to the activation of the Gata3 transcription factor. 

The results highlight the ligand-receptors pairs whose interactions are detected 

in the downstream transcription factor activity (Figure 5C).  
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 Fig. 5. Ligand-receptor analysis of the GL261 immune microenvironment. 

A) UMAP visualization showing grouped subpopulations used for a ligand-receptor 
analysis. Mo = Mo + intermediate Mo-Mph, Mph = phagocytic Mph + immunosuppr Mph, 
DC = moDC + preDC + cDC1 + cDC2 + pDC, MG = activated MG + phagocytic Mg + 
prolif MG, NK = premature NK + mature NK + GANK, CD8+ Teff = CD8+ 
Teff1/Teff2/Tex/Tex progenitor, Th1= Th1, Treg=Treg. B) Heatmap showing interaction 
probability calculated with the CellChat ligand-receptor analysis tool. Ligands come from 
myeloid populations when receptors from T/NK cells. C) River plot showing results of 
CellCall ligand-receptor analysis. The results are trimmed by a method to the ligand-
receptors pairs whose interaction effect was seen in the downstream transcription factor 
activity. D) Violin plots showing expression of crucial for T cells activity ligand-receptor 
pairs. Ligands come from myeloid populations (Mo,Mph,MG,DC) when receptors and 
downstream TF from CD8+ Teff cells. 
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Examining the pattern of inhibitory immune checkpoint receptor 

interactions, comparable trends across different T cell populations were 

observed. The most pronounced difference was in interaction strength. Tregs 

exhibited the highest interaction strength for the Cd86-Ctla4 pair and the lowest 

for the Cd274-Pdcd1 pair. Interestingly, the interaction of Lgals-9-Havcr2, 

although significant in Th1 and CD8+ Teff cells, was not statistically significant in 

Tregs (Figures 5B,D). Overall, CD8+ Teff cells displayed the lowest interaction 

probability with checkpoint molecules, and no single sender cluster emerged as 

predominantly strong.  

In the context of inhibition-type pairs, CD8+ Teff cells again showed the 

fewest statistically significant interactions, while Tregs had the most. The pattern 

of activatory immune checkpoint interactions was similar among T cell 

populations. CD8+ Teff cells again presented with the lowest probability score, 

consistent with the expression levels of Cd28 and Icos (Figures 5B,D). Microglia 

appeared as the only viable source of Icos, whereas dendritic cells exhibited a 

higher expression of Cd80 compared to other cell types. Regarding other 

activatory ligand-receptor pairs, significant variations in the expression of various 

ligands and receptors across different cell populations were observed. Microglia 

stood out as the most crucial sender of activatory molecules to Tregs. 

4.5. Impact of the mutant IDH1 on the immune microenvironment of 
mouse high grade gliomas 

A critical advancement in understanding pathobiology of gliomas has been 

the identification of mutations in the IDH1 gene coding for a isocitrate 

dehydrogenase 1. Recognized as a key biomarker, IDH1 mutations have 

substantial implications for the diagnosis, prognosis, and therapeutic targeting of 

gliomas. However, the specific effects of mutant IDH1 on the immune 

microenvironment in gliomas have not been extensively studied using mouse 

models. To address this knowledge gap, four genetically modified glioma cell 

lines were utilized. They harbor wt/mtIDH1 with shTP53-GFP; shATRX; and go 

by a codename “NRAS” and PDGFB overexpression;shTP53;shATRX;Ink4a;Arf-

/-; along with wt/mtIDH1 and go by a codename “PDGFB”  cells [Figure 

6B]. These gliomas represent either proneural-like (PDGFB) or mesenchymal-

like (NRAS) glioblastomas. The figure 6A shows the scheme of the experiments. 
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The tumor bearing hemispheres were dissociated and Cd45+ immunosorted 

followed by CITE-seq with cell marker antibodies. In parallel, fresh frozen 

sections of the tumors were subjected to Visium 10X spatial transcriptomics 

analysis. The expression of mtIDH1 in the respective cells was verified with 

Western blotting.   

Fig. 6. The immune landscape of high-grade gliomas with different genetic 
backgrounds.  
A)  A scheme of the experiments and workflow applied to murine NRAS/PDGFB 
IDH1wt/mt gliomas included in the present study created using elements adapted from 
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BioRender.com. CD45+ cells were isolated from gliomas at the symptomatic state. 
CITE-seq data from NRAS IDH1 wt/mut n = 8 samples,  PDGFB IDH1 wt/mut n =6 
Visium 10X Genomics performed on NRAS IDH1 wt/mut n = 4, PDGFB IDH1 wt/mut n 
= 4. B) Western blot showing the presence of the IDH1 R132H mutant protein in given 
cells. C) wnnUMAP visualization of murine scRNA-seq data split by condition, color 
coded for cell types. Main groups are marked by a dashed line. D) Mosaic plot showing 
a proportion of cells in a subpopulation originated from a given condition. Stacked 
barplots width corresponds to the number of cells in a given subpopulation. Whited-out 
barplots corresponds to subpopulations in which differences between conditions were 
not statistically meaningful.  
 

CITE-seq, utilizing 45 antibodies, was performed by Dr. Anna Lenkiewicz 

on fourteen brain samples from mice implanted with either proneural-like 

(PDGFB) or mesenchymal-like (NRAS) IDH1wt/mt cells [Figure 6A]. The 

presence of the IDH1 R132H mutant protein in given cells was confirmed by 

Western blotting (Figure 6B). Dimensionality reduction was accomplished using 

Uniform Manifold Approximation and Projection (UMAP) based on RNA 

expression profiles and protein levels. This was combined with Weighted-

Nearest Neighbor (WNN) clustering using the Leiden algorithm, resulting in the 

identification of 27 distinct cell clusters (Figure 6C). Cluster identities were 

assigned using the label transfer method and expert based labelling, referencing 

the GL261 immune environment atlas created in earlier steps. 

A significant trend observed in both cell lines was a marked reduction in 

the numbers of Th1 cells, Tregs, and CD8+ effector T cells in IDH1mt gliomas 

(Figure 6D). Within the myeloid compartment, there was an increase in the 

number of intermediate monocytes-macrophages (Mo-Mph) and a decrease in 

phagocytic macrophages (Mph) in IDH1 mutant tumors.  

4.6. Impact of the mutant IDH1 on T cells subpopulations 

 The Visium spatial transcriptomics experiment was performed by Dr. 

Mitrajit Ghosh and Msc Paulina Pilanc. Mice were implanted with both NRAS 

IDH1wt/mt and PDGFB IDH1wt/mt cells, and when mice reached a symptomatic 

phase, they were sacrificed and perfused with PBS. The tumor sizes across the 

different cells were comparable. 
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Fig. 7.1. Altered composition of immune cell subpopulations in IDHmt gliomas.  
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A) Spatial plot showing microglia, macrophage and T cell scores calculated based on 
expression of marker genes in a given population assessed based on our scRNA-seq 
data.B) Representative images of immunohistochemistry staining showing the 
distribution of the CD8+ T cells. 

Due to the lack of full scRNAseq data from NRAS and PDGFB gliomas, specific 

immune subpopulations were identified using marker gene scores. Through the 

application of gene scores derived from the CITE-seq analysis, the distribution 

and positioning of principal cellular contingents was elucidated, as depicted in 

the Figure 7.1A. Notably, microglia predominantly congregated at the periphery 

of the tumor, whereas macrophages infiltrated the central region. The 

quantification of T cell scores showed the decrease of T cell numbers in 

IDH1mt tumors. This observation was corroborated by immunocytochemistry 

staining [Figure 7.1B]. The T cells were localized within the tumor core in a 

dispersed manner. 

Fig. 7.2. Altered composition of immune cell subpopulations in IDHmt gliomas. 
A) Dotplot showing the abundance of a given cell type as a percentage of all leukocytes 
(CD45+ cells) in tumor bearing hemisphere. Results were obtained with the flow 
cytometry experiment. B) Dotplot showing Gene Set Enrichment Analysis (GSEA) 
results of T cells (all T cell populations grouped together), executed on KEGG pathways. 
Red Normalized Enrichment Score (NES) values indicate upregulation of a given gene 
set in a given population, while blue values indicate downregulation. Dot size 
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corresponds to adjusted p-value (padj). C-D) Violin plots showing values of cytotoxicity 
and exhaustion scores for given CD8+ effector T cell population. 

 

Subsequent flow cytometry analysis performed by Dr. Salwador Cyranowski 

provided an additional verification of the reduced T cell numbers in NRAS IDH1mt 

and PDGF IDH1mt gliomas, as shown in the Figure 7.2A. In IDH1mt tumors,  

decreased numbers of newly activated, exhausted CD8+ T cells  and activated 

Th1 cells were observed. Treg numbers were reduced in IDH1mt tumors, aligning 

with the results from scRNA-seq, however this difference wasn’t statistically 

significant due to the high variance between different samples.  

In further pursuit of understanding how the IDH1 mutation influences T cell 

functionality, a Gene Set Enrichment Analysis was performed across pooled T 

cell populations. The results of GSEA analysis are presented in the Figure 7.2B. 

T cells originating from IDH1mt tumors demonstrated the diminished antitumor 

activity, as evidenced by lower scores within the “TCR signaling pathway” and 

“Natural killer cell mediated cytotoxicity” gene sets. An examination of metabolic 

gene set scores further substantiated these outcomes, revealing a decrease in 

the expression of genes involved in oxidative phosphorylation and glycolysis In 

T cells from IDH1mt tumors.  

To ascertain anti-tumor efficacy of T cells, two distinct scores were 

calculated: one reflecting cytotoxicity and another denoting exhaustion. These 

metrics demonstrate that T cells from IDH1mt tumors exhibit a reduced cytotoxic 

capability, and display lower extent of exhaustion when compared to their 

counterparts from IDH1 wt tumors (Figures 7.2C and D, respectively). 

4.7. Impact of the mutant IDH1 on macrophage subpopulations and 
myeloid-lymphoid interactions in gliomas 

While changes in the proportions of macrophage subpopulations in 

IDH1mt gliomas were not as pronounced as those in the T cell compartment, an 

analysis of global effects was performed. GSEA was accomplished on 

aggregated populations of monocytes, macrophages, and microglia to capture 

the global effect of the IDH1 mutation on myeloid subpopulations.  
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Fig. 8.1. Switch in functionality of GAMs in IDH1mt gliomas.   
A) Dotplot showing GSEA results of myeloid cells (monocytes, macrophages, microglia, 
dendritic cells), executed on KEGG pathways. Red Normalized Enrichment Score (NES) 
values indicate upregulation of a given gene set in a given population, while blue values 
indicate downregulation. Dot size corresponds to adjusted p-value (padj). B-C) Heatmap 
showing differential CellChat ligand-receptor analysis. Myeloid cells (Mph, Mg, DC) are 
the source of ligands when T/NK cells are the source of receptors. The darker the color, 
the more down/up-regulated given ligand-receptor interaction is in IDH1mt tumors. D) 
Dotplots showing concentration of selected cytokines and chemokines in protein extracts 
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isolated from tumor bearing hemispheres of various mice. Results were obtained by the 
ELISA experiment, n=4/group.  

 

 GAMs from IDH1mt gliomas exhibited higher scores in oxidative 

phosphorylation and lower scores in glycolysis. They also displayed 

downregulated scores in activatory innate immune pathways such as JAK/STAT, 

TOLL-like, and NOD-like signaling pathways, along with upregulation of pro-

tumor gene sets involved in WNT and VEGFA signaling pathways. Additionally, 

these GAMs demonstrated altered scores in Antigen Processing and 

Presentation (Figure 8.1A), consistent with the observed expression levels of the 

MHCII protein and coding genes (Figure 8.2A). Increase in ARG1 at both the 

RNA and protein level together with decrease in CD86, which is a ligand of the 

activatory receptor CD28, were found (Figures 8.2A, C). This pattern could 

underlie the reduced activity of T cells in IDHmt gliomas (Figures 7.2B-C). 

Furthermore, reduced levels of CD86 and PD-L1, ligands of the inhibitory 

immune checkpoints CTLA4 and PD1, were detected. The downregulation of 

these molecules, in conjunction with the diminished activation of T cells, 

correlates with the observed lower exhaustion of T cells in IDH1mt gliomas. 

 Exploration of GSEA calculated on public human scRNA-seq data 

[52](Figure 9A) and gene expression patterns from human bulk RNA-seq data  

[52](Figure 8.2B) validated most of these findings. GAMs from IDH1mt high grade 

gliomas have lower scores of Antigen Processing and Presentation and other 

proinflammatory pathways (e.g. JAK-STAT signaling)(Figure 9A). Their 

metabolism was also lowered, with a negative score of 

Glycolysis/Gluconeogenesis pathway, the same as in murine glioma dataset. 

However, in human data, the Oxidative Phosphorylation gene set is 

downregulated in GAMs from IDH1mt high grade gliomas, suggesting even 

stronger inhibition of metabolism pathways than in murine gliomas.  The 

expression patterns of MHCII, CD86, and ARG1 aligned with those observed in 

murine data, whereas PD-L1 expression diverged, exhibiting markedly higher 

levels in IDH1mt human samples (Figure 8.2B). 

 These findings suggest that the global phenotype of GAMs in IDH1mt 

tumors is more anti-inflammatory and pro-tumor compared to GAMs from IDH1wt 

gliomas. This shift is also evident at the transcription factor level, with GAMs from 
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IDH1mt tumors displaying significantly lower expression of classical 

proinflammatory transcription factors, encompassing Stat1, Irf3, Rela, Nfkb1, 

Fox, and Jun (and human orthologs), both in mice and human samples (Figure 

8.2D-E). 

Fig. 8.2. Switch in functionality of GAMs in IDH1mt gliomas.  
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A) Ridge plots showing expression levels of specific proteins and corresponding genes 
in glioma associated myeloid cells (GAMs). B) Ridge plots based on publicly available 
data of GAMs from human high grade glioma IDH1wt/mt patients, showing expression 
of specific genes. C) Violin plots showing selected markers as results of flow cytometry 
experiment, n=4. D) Violin plots showing expression of proinflammatory transcription 
factor (TF) scores in GAMs from different experimental groups. E) Violin plots showing 
expression of proinflammatory TF scores in GAMs from IDH1wt and IDH1mt gliomas. 

 

 Building on these findings, our CellChat analysis was performed to 

delineate the ligand-receptor interactions between myeloid cells and T/NK cells. 

The results revealed a distinct pattern of communication in IDH1mt tumors, as 

detailed in Figures 8.1B-C. To simplify the complexity of the analysis, the number 

of populations was redefined and they were grouped into new clusters as shown 

in the Figure 9B. IDH1 mutant tumors displayed a scarcity of upregulated ligand-

receptor pairs, particularly within the chemokine network, with only interactions 

of pairs Ccl3-Ccr5, Ccl4-Ccr5, and Ccl6-Ccr2 between microglia and NK cells 

being statistically significantly upregulated (Figure 8.1C). Simultaneously, the 

myeloid-lymphoid communication axis in these tumors showed a broad 

downregulation of ligand-receptor interactions, as detailed in the Figure 9B. This 

pattern was especially marked in inhibitory checkpoints, showing significant 

downregulation in interactions with Th1 and CD8+ Teff cells across ligand 

sources. Moreover, a widespread downregulation in interaction probabilities was 

also observed across rest of theligand-receptor subgroups. This included both 

activatory (e.g., Cd80-Cd28, Icos-Icosl) and inhibitory pairs (e.g., Lgals9-Cd44, 

Cd274-Pdcd1). The most affected were chemokine-chemokine receptor 

interactions in CD8+ Teff and Th1 cells, particularly within the CXCL family 

(Cxcl9, Cxcl10, Cxcl16) highlighted in the Figure 8.1B. It could be explained by 

downregulation of both RNA expression and activity of STAT1, which is the 

upstream transcription factor of these chemokines [Figure 9E]. 

 
 
 
 
 
 
 
 
 
 



 
 

74 
 

 

Fig. 9. Altered functional pathways and cell-to-cell communications in IDH1mt 
gliomas. 
A) Dotplot showing GSEA results of myeloid cells (monocytes, macrophages, microglia, 
dendritic cells), executed on KEGG pathways. Red NES values indicate upregulation of 
a given gene set in a given population, while blue values indicate downregulation. Dot 
size corresponds to adjusted p-value (padj). B) UMAP showing grouped population used 
for CellChat analysis in color. The greyed-out populations were excluded from the 
analysis. C) Relative information plot showing signal strength of given L-R group in given 
condition. D) Heatmap showing the results of differential CellChat ligand-receptor 
analysis. T/NK cells are the source of ligands when myeloid cells (Mph, Mg, DC) are the 
source of receptors. The red color means that given ligand-receptor interaction is 
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strongly downregulated in IDH1mt tumors. E) Scatter plot of Stat1 expression and 
STAT1 regulon activity score. F-G) Violin plots of Ahr and Slc3a2 expression in IDH1wt 
and IDH1mt gliomas. 

 

 A significant reduction in Treg recruitment interactions, notably from 

microglia and prominently those involving the CCL family, is demonstrated in the 

Figure 8.1B. The results are consistent with the results of the ELISA experiments 

showing strong reduction in chemokine concentrations between IDH1wt/mt 

gliomas (Figure 8.1D). These observations reinforce the findings about the 

altered communication landscape in IDH1mt tumors.  

The analysis of the interactions between ligands from T/NK cells and 

receptors from myeloid cells, did not reveal any meaningful interaction 

upregulated in IDH1mt tumors. Nevertheless, there were a plenty of meaningful 

downregulated pairs, mostly from the Activatory Class, such as Mif-(Cd74+Cd44) 

or Ifng-(Ifngr1+Ifngr2), and from the Chemokine Class [Fig  9D]. There were only 

three downregulated pairs in the Inhibitory Class, with the most notable being 

downregulation of Il10-(Il10ra+Il10rb) between Tregs and all four APC types, and 

downregulation of Fasl-Fas interactions between all four T/NK cell classes and 

monocytes/dendritic cells. 

The analysis of ligand-receptor pairs on grouped cell classes further 

validates the differences between functionalities of myeloid cells from IDH1mt 

and IDH1wt gliomas [Figure 9C]. In myeloid cells from IDH1mt gliomas the top 

downregulated classes are inflammatory (e.g. ICOS), anti-inflammatory (e.g 

PDL1/2) and mixed (e.g. CD86, Galectin). Moreover, the impairment in 

interactions of MHC-I, MHC-II and CXCL classes in IDH1mt tumors even further 

attest their anergic and dysfunctional character. 

The pathological tryptophan degradation by Slc3a2-Slc3a5 (CD98-LAT1) 

and Tdo2 (TDO2) leading to activation of the immunity master regulator AHR 

(aryl hydrocarbon receptor) were proposed as the main drivers of R-2-HG 

dependent reprogramming of GAMs [52]. Consistently with those findings, Ahr is 

overexpressed in IDH1mt mouse gliomas [Figure 9F]. However, levels of Slc3a2 

were high through all monocyte-macrophage clusters, (beside early monocytes) 

from IDH1wt gliomas [Figure 9G]. Tdo2 and Slc3a5 were expressed broadly 

enough to compare between groups. 
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5. Discussion 

5.1. An atlas of the immune microenvironment in GL261 glioma 

Resolving the complexities of the tumor microenvironment is necessary 

for a comprehensive understanding of tumor biology, with broad implications for 

therapy. In this study, an extensive analysis of immune infiltrates in glioma TME 

was performed using single-cell RNA sequencing with protein epitope 

sequencing and Visium Spatial Transcriptomics. Most of the methods have been 

implemented and applied to define immune TME of the most popular glioma 

model, namely GL261 gliomas. In the second part, the most detailed 

characterization of immune TME of genetically defined murine gliomas was 

achieved.  

Building upon previous research from Kaminska’s group on myeloid cell 

transcriptomes within the GL261 glioma microenvironment [94][111], the 

research has been extended with more detailed characteristics of myeloid cells 

and an unprecedented description of lymphoid compartment. The presented 

results extend knowledge and understanding of microglia reprograming, 

macrophage and NK cell maturation in TME. The results elucidated the dynamics 

of transcription factor expression during this process, and delineated their spatial 

distribution.  

In this study, new way of categorizing macrophage states into four distinct 

subpopulations is proposed, which is a smaller number than previously described 

based on scRNAseq data. The higher numbers of subpopulations (as proposed 

by Pombo-Antunes, Scheyltjens,  and Lodi, F. et al. [112] ), were likely the result 

of overclustering and are potentially confounding for translational and clinical 

analyses. Explicitly we identified two terminal macrophage states in the glioma 

microenvironment: phagocytic macrophages (enriched in lipid metabolism 

pathways and phagocytosis-associated genes) and immunosuppressive 

macrophages (marked by hypoxia-responsive genes and anti-inflammatory 

mediators). Both states exhibited significant downregulation of proinflammatory 

signaling and MHC class II antigen presentation compared to newly infiltrated 

monocytes and transitory Mo-Mph, reflecting tumor-driven suppression of their 

anti-inflammatory potential. 
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The combination of scRNAesq and spatial transcriptomics approaches 

confirmed that microglia are more abundant at the tumor margin, where invasion 

takes place, while monocytes and monocyte-derived macrophages tend to 

occupy a tumor core. The data show that immunosuppressive and phagocytic 

macrophages are mature cells and they occupy distinct regions in the tumor core.  

Within the lymphoid compartment, all of the major T cell populations were 

identified, providing a valuable reference for cell annotation. The Teff:Treg ratio 

in GL261 gliomas have been determined to be approximately 4:1. Our results are 

in line with recent observations that GL261 gliomas are  moderately 

immunogenic, with relatively high CD8+ lymphocyte infiltration 

[56][104][105].  Additionally, four distinct CD8+ effector T cell populations 

exhibiting differences in gene expression related to cytotoxicity, exhaustion, 

metabolic activity, and transcription factor profiles were characterized. The 

results are consistent with the notion that the transition of CD8+ effector T cells 

into an exhausted state occurs in the GL261 gliomas, which allows to distinguish 

between CD8+ Teff1, CD8+ Teff2 and CD8+ Tex subpopulations. Notably, these 

two Teff subpopulations appear to be unique to the GL261 gliomas, as none of 

the other four types of high-grade gliomas analyzed in this study display such a 

clear distinction within the effector subpopulations. 

Of note, the distribution of CD8+ T cell populations is much less linear in 

the GL261 gliomas compared to other studied gliomas, where it was not possible 

to track exact maturation pathways of these populations. The re-analysis of 

human data extracted from GSE182109 [113] did not show similar effector 

subpopulations corresponding to CD8+ Teff1 or Teff2 not-exhausted clusters 

characterized by differential granzyme activity. We also confirmed that none of 

these CD8+ Teff subpopulations was highly similar to tumor-reactive CD8+ T 

cells observed in human, characterized by high expression of CXCL13, ENTPD1 

and PDCD1 [119], suggesting that the GL261 gliomas may not be optimal model 

for evaluating T-cell-based immunotherapies.  

Within the NK cell population, a cluster of glioma-associated NK cells 

(GANK) exhibiting reduced cytotoxicity, heightened expression of tumor-

promoting molecules, and a preference for localization within the tumor core was 

identified. This observation line up with findings from Fei et al. [114], which 

demonstrated the reprogramming of NK cells into a dysfunctional state within the 
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tumor microenvironment, characterized by elevated expression of Cxcr4, 

consistent with our results. However, the study, focusing primarily on the 

diminished cytotoxic potential of these dysfunctional NK cells, did not specifically 

highlight the increased expression of protumor molecules such as Vegfa and 

Tgfb1, found in GANKs. 

Reprogrammed myeloid cells associated with tumors are widely 

recognized as suppressors of T cells and their antitumor functions [115]. The 

performed ligand-receptor analysis on communication between the myeloid and 

lymphoid compartments provides additional evidence of the immunosuppressive 

capabilities of glioma-associated myeloid cells, offering detailed insights into the 

direct mechanisms by which they suppress lymphoid cells. Microglia appeared 

as a major source of cytokines and chemokines targeting T cells, including Tregs. 

The importance of several interactions between myeloid–lymphoid cells, i.e. 

Cxcl16-Cxcr3, Cd68-Ctla4, Lgal9-Cd45 emerged from the study as putative 

pathways deserving further studies. The Cxcl16–Cxcr3 axis is known to guide 

the migration of both Tregs and CD8+ T cells; however, our data reveal that the 

strongest interactions via this pathway occur with Th1 cells, followed by CD8+ T 

cells, while the interaction probability with Tregs is significantly low. Concurrently, 

the Cd68–Ctla4 pathway suggests that myeloid cells may attenuate T cell 

activation through engagement of Ctla-4, and the Lgal9–Cd45 axis implies that 

myeloid-derived galectin-9 might modulate lymphoid signaling, thereby 

contributing to an overall immunosuppressive microenvironment. Interestingly, 

the Activation category features many interactions, such as Cd40–Cd40l, which 

can enhance T cell activation. However, in the context of gliomas, these 

activation signals are often overshadowed by the dominant immunosuppressive 

environment. The heatmap suggests that while some pro-inflammatory or 

activating signals exist, they may be insufficient to overcome the stronger 

inhibitory cues delivered by myeloid cells. Another noteworthy detail is the varied 

contribution of different myeloid subsets: microglia, monocyte-derived 

macrophages, and potentially dendritic cells. Although microglia appear to be a 

major source of chemokines and inhibitory ligands, other myeloid cells also 

produce overlapping signals. This redundancy could serve as a robust 

mechanism by which the tumor microenvironment enforces T cell suppression 

and immune evasion. 
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5.2. Altered immune composition and immune cell functions in IDH1 
mutant gliomas 

The production of 2-HG by IDH1 R132H has been extensively studied as 

an oncometabolite has been shown as a potent modulator of T cells, impairing 

the immune responses to tumors. Its impact on myeloid cells in humans was 

investigated by the teams of Michael Platen and Marco Prinz, as detailed in 

Friedrich et al. [52]. Due to the inherent noise in human data and the limited 

sample size (n=14), coupled with the utilization of only one mouse model to 

validate their observations and a focus solely on myeloid cells, the study had its 

limitations. Employing CITE-seq and Spatial Visium Transcriptomics, four distinct 

IDH1 R132H wild-type/mutant high grade gliomas mouse models were 

investigated. To isolate the effects specifically attributable to the mutant IDH1, I 

deemed findings consistent across both HGG mouse models as meaningful. 

This study unveiled a marked reduction in the T cell population, particularly 

noticeable within the tumor core. The findings are in agreement with the well-

established facts that 2-HG exerts potent toxicity towards T cells and highly 

reduces their proliferation potential [116][117]. The surviving T cells displayed 

diminished metabolic activation and cytotoxic potential, alongside reduced 

exhaustion levels. Our observations regarding decreased cytotoxic potential and 

glycolytic activity resonate with the findings of Notarangelo et al. [117], reinforcing 

their conclusions at the single-cell level. However, our findings diverge 

concerning oxidative phosphorylation. Notarangelo and colleagues 

demonstrated that 2-HG hyperpolarizes the mitochondrial membrane, enhancing 

mitochondrial respiration to counterbalance the reduced glycolytic activity. 

Importantly, this increase in mitochondrial membrane potential (MMP) was not 

attributed to changes in a mitochondria number, as evidenced by unchanged 

mitochondrial to nuclear DNA ratio and expression of electron transport chain 

subunits. They identified the lactate dehydrogenase (LDH) as a molecular target 

of d-2HG, and demonstrated that inhibition of LDH affects immune CD8+ T cell 

signature in association with decreased cytotoxicity and impaired interferon-γ 

signalling. The supporting evidence was found in clinical samples of IDH1mt 

gliomas. In this study the decrease in the expression of genes linked to the 

oxidative phosphorylation pathway was demonstrated. This suggests that over 
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time, the benefits of heightened mitochondrial respiration might be counteracted 

by a deficiency in essential proteins, further diminishing the energy accessible to 

T cells. 

In response to 2-HG in IDH1mt gliomas, myeloid cells undergo a 

significant reprogramming, as indicated by Friedrich et al. [52]. This 

reprogramming manifests in reduced metabolic activity and suppressed 

proinflammatory programs, coupled with the activation of tumor-supporting 

pathways, as reflected in alterations in the transcription factor landscape. 

Simultaneously, interactions between myeloid cells and T cells, both pro and anti-

inflammatory, are diminished. Our results demonstrate the decreased production 

of chemokines which results in the reduced recruitment of T cells across all 

populations, adding to the reduced proliferation of T cells directly caused by 2-

HG in TME. Additionally, the antigen presentation capacity of tumor-associated 

macrophages is compromised, leading to decreased activation of Th1 cells. We 

see the downregulation of genes coding proteins from both activatory and 

inhibitory pathways in myeloid cells. Combined with massive reduction of T cell 

number, this environment looks incapable of starting the immune response to 

tumor, which is in line with very limited response to most of the immunotherapy 

treatment. 

Previous studies have proposed that pathological tryptophan degradation 

mediated by the Slc3a2–Slc3a5 (CD98–LAT1) complex and Tdo2 (TDO2) drives 

R-2-HG–dependent reprogramming of glioma-associated macrophages via 

activation of the aryl hydrocarbon receptor (AHR), a master regulator of immune 

responses [52]. In this study, we observed that Ahr is markedly overexpressed in 

IDH1-mutant gliomas, supporting the notion of enhanced AHR activation in these 

tumors. Interestingly, while Slc3a2 expression was consistently high across 

myeloid populations in IDH1 wild-type tumors (except for early monocytes), both 

Tdo2 and Slc3a5 were expressed broadly enough to enable direct comparisons 

between groups. These findings suggest that although AHR activation appears 

to be a common feature in gliomas, the regulation of upstream tryptophan 

degradation components may vary with IDH1 mutation status in our mouse 

model, indicating potential differences in immune reprogramming that warrant 

further investigation in human gliomas. 
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Modern high-dimensional studies, including multiomics approaches, 

generate vast datasets that necessitate selective focus to craft a coherent 

narrative. This thesis prioritizes a comprehensive description of immune cell 

heterogeneity in gliomas, a design choice that inherently limits mechanistic 

validation of all findings. While many observations—such as phagocytic 

macrophage states or NK cell reprogramming—await functional confirmation, 

this work establishes a foundational atlas for future hypothesis-driven research.  

While our datasets offers valuable insights, several issues were not 

addressed and limitations must be acknowledged. 

1. Sex-specific responses: 

The study exclusively used male mice, omitting female subjects. The lack of 

female data limits our understanding of leukocyte cell variability, particularly   

given potential hormonal influences on immune responses. 

2. Temporal dynamics 

The study captures immune profiles at a single time point (21 days post-

implantation), omitting dynamic changes during early tumorigenesis or late-

stage progression. This limits insights into how myeloid/lymphoid ratios or 

functional states evolve over time, potentially affecting translational 

relevance. 

3. Technical scRNA-seq biases 

Cell isolation methods (e.g., CD45+ sorting) exclude dead cells, low-

abundance populations (e.g., neutrophils), and fragile subsets, while tissue 

dissociation protocols may artificially alter stress-induced gene expression. 

This could underrepresent transient or sensitive immune states critical to the 

glioma microenvironment. 

4. Proportional vs. absolute quantification: 

Reported immune cell proportions lack density metrics (e.g., cells/mm³, 

specific cell type / 1000 cells), which are critical for contextualizing infiltration 

levels across tumor regions. Such data would enhance utility as a reference 

for experimental and computational studies. 
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5. Engineered tumors: 

6.  

IDH1 mutant gliomas were induced via implantation of genetically 

modified cells, which lack the spontaneous genetic heterogeneity and 

microenvironmental evolution of human IDH1-mutant gliomas, which 

develop across long period of time. 

7. Interspecies differences:  

 Murine immune pathways (e.g., chemokine networks, NK cell  

 biology) diverge from humans, complicating clinical extrapolation. 
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6. Summary and conclusions  

We accomplished the aims of the study and achieved the following results:  

1. We characterized and categorized immune cells within the glioma TME. 

2. We defined the functional attributes of each immune cell type infiltrating the 

glioma TME. 

3. We found meaningful interactions between myeloid and lymphoid populations 

within the glioma TME. 

4. We found the strong influence of the IDH1 R132H mutant on immune cell 

proportions, phenotypes and interactomes in the glioma immune TME  

5. The computational findings were validated with complementary methods, 

including flow cytometry and immunofluorescence.  

Altogether, our comprehensive investigation represents a significant 

advancement in understanding the complexity of glioma TME and the intricate 

effects of R132H IDH1mt in high grade gliomas. By employing state-of-the-art 

methodologies and meticulous analysis, unparalleled isolation and resolution of 

these effects was achieved, shedding new light on the complex interplay between 

tumor-associated factors and the immune microenvironment. This deepened 

understanding not only elucidates the mechanisms underlying tumor progression 

but also holds promise for the development of more targeted and effective 

therapeutic interventions. Thus, our work stands as a cornerstone in the ongoing 

quest to combat gliomas and underscores the importance of continued 

exploration in this critical area of cancer research.  
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