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Abstract 

Functional Magnetic Resonance Spectroscopy (fMRS) is a non-invasive technique used to 

measure dynamic changes in metabolite concentrations in response to stimuli. Despite its 

potential for advancing our understanding of brain activation mechanisms, fMRS remains 

relatively novel and the temporal dynamics of glutamate (Glu), the main excitatory 

neurotransmitter, following stimulation have not yet been fully explored. To date,  

no studies have applied fMRS to the reading process, despite the potential of this approach 

to reveal dynamic glutamate responses that may underlie both typical reading and its 

impairments in dyslexia. One of the newest mechanistic account of dyslexia, the neural 

noise hypothesis, suggests that it could be caused by an imbalance between glutamate and 

gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter. In particular,  

an elevated concentration of glutamate in the left superior temporal sulcus (STS) was 

proposed to disrupt signal processing and impair reading acquisition. 

The aim of this thesis was to investigate glutamate concentration changes during  

reading-related tasks, in brain regions involved in reading: the superior temporal sulcus and 

the visual word form area (VWFA), as well as in one control region, the medial prefrontal 

cortex (mPFC). To characterize the temporal dynamics of glutamate, fMRS signals were 

acquired at four different delays between stimulus onset and signal acquisition. Participants 

with varying reading abilities, including individuals diagnosed with dyslexia and typical 

readers, were scanned at both 7T and 3T MR scanners. In total, 59 participants  

(29 with dyslexia, 13 females; 30 typical readers, 14 females) were scanned at 7T, and  

40 participants (21 with dyslexia, 9 females; 19 typical readers, 11 females) at 3T. 

Glutamate levels were compared between groups to determine whether participants 

diagnosed with dyslexia exhibit higher glutamate concentrations in reading-related brain 

regions. While 7T scanners theoretically provide higher spectra resolution and improved 

metabolite separation, they also introduce technical challenges.  

For the VWFA, reliable analysis was not feasible due to insufficient spectral quality, 

highlighting the methodological difficulty of collecting data from regions susceptible to 

magnetic field inhomogeneities. In the STS, glutamate responses to reading-related 

stimulation were heterogeneous. Effects were more apparent in females, yet they were 

sensitive to blood oxygenated level depended (BOLD) correction and varied between 7T 
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and 3T. No evidence of elevated glutamate in dyslexic participants within the left STS was 

observed, which does not support the neural noise hypothesis. Glutamate concentration 

changes were not limited to reading-sensitive regions, and some responses were also 

observed in the mPFC. A consistent glutamate response function could not be established, 

as glutamate changes varied across sex, group, brain region, stimulation type, and scanner. 

This inconsistency may reflect limited spectral quality due to a small number of averaged 

signals and the impact of BOLD contamination. Additionally, glutamate levels were 

significantly influenced by sex, age, and voxel tissue composition. While 7T improved 

some quality parameters, overall gains over 3T were inconsistent and region-dependent. 

These findings suggest that the practical advantages of ultra-high-field scanners in fMRS 

depend on region and are constrained by technical challenges.   
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Streszczenie 

Funkcjonalna spektroskopia rezonansu magnetycznego (fMRS) to nieinwazyjna metoda 

pozwalająca mierzyć dynamiczne zmiany stężeń metabolitów w mózgu w odpowiedzi  

na bodźce. Mimo dużego potencjału w badaniu mechanizmów aktywacji mózgu, fMRS 

pozostaje techniką relatywnie nową, a dynamika czasowa odpowiedzi glutaminianu (Glu), 

głównego neuroprzekaźnika pobudzającego, po stymulacji nie została jeszcze w pełni 

zbadana. Do tej pory żadne badania nie zastosowały fMRS w procesie czytania,  

mimo że podejście to mogłoby ujawnić dynamiczną odpowiedź glutaminianu leżącą  

u podstaw zarówno typowego czytania, jak i jego zaburzeń w dysleksji. Jedna  

z najnowszych hipotez dotyczących mózgowych mechanizmów dysleksji – hipoteza szumu 

neuronalnego – sugeruje, że może być ona spowodowana zaburzeniem równowagi między 

glutaminianem a kwasem gamma-aminomasłowym (GABA), głównym 

neuroprzekaźnikiem hamującym. W szczególności zaproponowano, że podwyższone 

stężenie glutaminianu w lewym górnym zakręcie skroniowym (STS) zakłóca 

przetwarzanie sygnałów i utrudnia nabywanie umiejętności czytania. 

Celem rozprawy było zbadanie zmian stężenia glutaminianu podczas zadań związanych  

z czytaniem w obszarach mózgu zaangażowanych w czytanie: STS oraz w obszarze 

wzrokowej formy słów (VWFA) w lewej korze skroniowo-potylicznej, a także w rejonie 

kontrolnym, przyśrodkowej korze przedczołowej (mPFC). Aby uchwycić dynamikę zmian 

glutaminianu w czasie, sygnały fMRS pozyskiwano przy czterech różnych opóźnieniach 

po rozpoczęciu bodźca. Uczestnicy ze zróżnicowanym poziomem umiejętności czytania, 

w tym osoby z dysleksją i typowo czytające, byli badani na dwóch skanerach 7T i 3T.  

W sumie 59 osób (29 z dysleksją, 13 kobiet; 30 typowych czytelników, 14 kobiet) zbadano 

na skanerze 7T, a 40 osób (21 z dysleksją, 9 kobiet; 19 typowych czytelników, 11 kobiet) 

na skanerze 3T. Stężenia glutaminianu porównywano między grupami, aby sprawdzić,  

czy uczestnicy z dysleksją wykazują wyższe wartości w obszarach mózgu związanych  

z czytaniem. Choć skanery 7T teoretycznie zapewniają wyższą rozdzielczość 

częstotliwościową, co pozwala na dokładniejsze rozróżnienie metabolitów, wiążą się  

z dodatkowymi trudnościami technicznymi.  

Ze względu na trudną lokalizację VWFA w obszarze narażonym na niejednorodności pola 

magnetycznego, nie udało się uzyskać wystarczającej liczby widm dobrej jakości,  
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by przeprowadzić analizy tego regionu. W STS odpowiedzi glutaminianu na bodźce 

związane z czytaniem były zróżnicowane. Efekty były bardziej widoczne u kobiet,  

ale w dużym stopniu zależały od zastosowania korekcji BOLD i różniły się między 

skanerami 7T i 3T. Wyniki nie wykazały wyższego poziomu glutaminianu w lewym STS 

u osób z dysleksją jak przewidziano w hipotezie szumu neuronalnego. Zmiany stężenia 

glutaminianu obserwowano nie tylko w obszarze związanym z czytaniem, lecz także  

w mPFC. Ze względu na zmienność wyników w zależności od płci, grupy, obszaru mózgu, 

rodzaju bodźca i skanera nie udało się ustalić funkcji zmian glutaminianu w czasie. Może 

to być spowodowane niewystarczającą jakością analizowanych widm powstałych  

z uśrednienia stosunkowo niewielkiej liczby sygnałów dla każdego z punktów czasowych 

oraz wpływem efektu BOLD. Zaobserwowano również, że płeć, wiek i skład tkankowy 

analizowanego woksela znacząco wpływały na poziomy glutaminianu. Niektóre parametry 

jakości widma były lepsze przy użyciu skanera 7T, jednak ogólne korzyści w porównaniu 

do 3T były niejednoznaczne i zależały od analizowanego obszaru mózgu.   
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Abbreviations  

ACC  anterior cingulate cortex 

ARHQ  Adult Reading History Questionnaire 

BOLD  blood oxygenation level–dependent 

Cho  choline  

CRLB  Cramér-Rao lower bound 

CSDE  chemical shift displacement error 

CSF  cerebrospinal fluid 

EEG  electroencephalography 

FID  free induction decay 

fMRI  functional magnetic resonance imaging 

fMRS  functional magnetic resonance spectroscopy  

FWHM  full width at half maximum 

GABA  gamma-aminobutyric acid 

GLM  general linear model 

Gln  glutamine 

Glu  glutamate 

Glx  glutamate + glutamine 

GM  gray matter 

GRF  glutamate response function 

GSH  glutathione  

Hz  hertz 

IFG  inferior frontal gyrus 

Lac  lactate 

LSS  letter–speech sound 

mI  myo-Inositol 

MM  macromolecules 

mM  millimolar 

mPFC  medial prefrontal cortex 

MRI  magnetic resonance imaging 

MRS  magnetic resonance spectroscopy 

MRSI  magnetic resonance spectroscopic imaging 

NAA  N-acetylaspartate 
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ppm  parts per million 

PRESS  Point RESolved Spectroscopy 

RAN  rapid automatized naming 

RF  radiofrequency 

SAR  specific absorption rate 

SNR  signal-to-noise ratio 

STEAM STimulated Echo Acquisition Mode 

STG  superior temporal gyrus 

STS  superior temporal sulcus 

tCr  total creatine  

TE  echo time 

TR  repetition time 

VWFA  visual word form area 

WM  white matter  
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1. Introduction 

1.1.  Magnetic resonance spectroscopy (MRS) 

Magnetic resonance spectroscopy (MRS) is a method used to analyze the chemical 

composition of selected tissues or materials. This non-invasive technique utilizes clinical 

magnetic resonance scanners, which are widely available in hospitals and research 

facilities, to identify and quantify metabolites (molecules involved in the body’s 

metabolism). 

For atomic nuclei to be visible in MRS, they must have magnetic moment (i.e., a spin 

different from zero), allowing them to interact with the magnetic field. Additionally, a high 

gyromagnetic ratio (unique to each nucleus) allows for high sensitivity in measurements. 

Furthermore, the isotope should have a high natural abundance in the body. Three isotopes 

are considered the most suitable for MRS experiments: phosphorus (31P: 15 protons,  

16 neutrons; 𝑠𝑝𝑖𝑛 =  1
2⁄ , gyromagnetic ratio = 17.24 MHz/T), carbon (13C: 6 protons,  

7 neutrons; 𝑠𝑝𝑖𝑛 =  1
2⁄ , gyromagnetic ratio = 10.71 MHz/T), and hydrogen (1H: 1 proton, 

0 neutrons; 𝑠𝑝𝑖𝑛 =  1
2⁄ , gyromagnetic ratio = 42.58 MHz/T). 

Phosphorus magnetic resonance spectroscopy (31P-MRS) offers valuable insights into 

energy metabolism by detecting high-energy metabolites and membrane phospholipids. 

However, its clinical application is limited due to its relatively low sensitivity and the low 

concentrations of these metabolites, which result in a low signal-to-noise ratio (SNR), 

coarse spatial resolution, and prolonged acquisition times (Santos-Díaz & Noseworthy, 

2020; Andrade et al., 2014). 

Carbon MRS (13C-MRS) allows for monitoring metabolic flux and neurochemical 

dynamics, offering valuable insights into energy production and neurotransmitter activity. 

However, its clinical use is limited by low sensitivity, partly due to the natural abundance 

of ¹³C is only about 1.1% of all carbon isotopes, as well as poor spatial resolution and long 

acquisition times. Despite these challenges, technological advancements are improving 

signal quality and acquisition speed (Gruetter et al., 2003; Ross et al., 2003). 
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Hydrogen (1H-MRS, proton) is most commonly used in MRS due to its strong magnetic 

moment, high sensitivity, and prevalence in the human body. The first reports describing 

proton magnetic resonance spectroscopy of the brain, including the measurement of  

N-acetylaspartate (NAA) using a 1.5 Tesla scanner and the STEAM sequence, were 

published in 1989 (Narayana et al., 1989). This marked the beginning of the rapid 

development of the MRS technique. Single-voxel spectroscopy, which measures chemical 

compounds in a selected brain region (a voxel), has since become widely used, not only by 

researchers but also in clinical settings to assist with diagnoses. Nevertheless, its clinical 

application remains limited. 

The MRS method could potentially be used in the future to non-invasively grade brain 

tumors instead of histopathological diagnosis, which requires a biopsy. There are studies 

suggesting that the Cho/Cr and Cho/NAA ratios may serve as useful markers in 

distinguishing between low- and high-grade gliomas (Shokry, 2012). Despite its valuable 

role in diagnosis and treatment, its diagnostic accuracy can be limited because different 

pathologies may share overlapping metabolic profiles, which complicates differential 

diagnosis (Weinberg et al., 2021). Nevertheless, a recent study showed that using full 

metabolite profiles together with machine learning enables 93% diagnostic accuracy in 

differentiating medulloblastoma, pilocytic astrocytoma, and ependymoma (Gill et al., 

2024). Magnetic resonance spectroscopy is also widely used to investigate the 

neurobiological basis of psychiatric disorders. For instance, Duarte and Xin (2019) reported 

an imbalance in the glutamine-to-glutamate (Gln/Glu) ratio in patients with schizophrenia, 

which may indicate disturbances in the glutamatergic cycle, along with reduced levels of 

N-acetylaspartate (NAA). In addition to brain research, MRS is also used to analyze the 

chemical composition of the breast (Begley et al., 2012; Baltzer & Dietzel, 2013), prostate 

(Stamatelatou et al., 2022; Bellomo et al., 2016), liver (Pasanta et al., 2021; Hamilton et 

al., 2009), muscle (Xu et al., 2012; Deshmukh et al., 2014), and spinal cord (Wyss et al., 

2017). 

Another important technique based on the phenomenon of magnetic resonance 

spectroscopy is magnetic resonance spectroscopy imaging (MRSI). This multi-voxel 

technique utilizes phase-encoding to acquire MRS data from many voxels, enabling the 

measurement of the spatial distribution of metabolite concentrations (Skoch et al., 2008; 

Posse et al., 2013; Maudsley et al., 2021).  
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Moreover, the new technique of functional magnetic resonance spectroscopy (fMRS) has 

recently become more attractive. fMRS enables the study of neurotransmitter concentration 

changes in the brain in response to stimuli. This novel method offers potential for 

improving our understanding of how the brain responds to various types of stimulation 

(Stanley & Raz, 2018). 

1.1.1. Physical principle of ¹H-MRS 

Proton magnetic resonance spectroscopy (¹H-MRS) is based on the same physical 

principles as magnetic resonance imaging (MRI). In both techniques, signals from 

hydrogen protons are used either to generate anatomical images (MRI) or to obtain  

a frequency spectrum of biochemical compounds (MRS). Since protons are most abundant 

in water, which is present at concentrations approximately 10⁴ times higher than other 

metabolites, water suppression is necessary to detect the much weaker metabolite signals 

(Tkáč et al., 2021). Excited hydrogen nuclei generate a signal in the time domain, which is 

then converted into the frequency domain using the Fourier Transform. 

Protons in different chemical environments experience slightly different local magnetic 

fields. This variation arises from the motion of electrons surrounding the nucleus, which 

generate small circulating currents. These currents produce secondary magnetic fields that 

oppose the main magnetic field (B₀), a phenomenon known as electron shielding. As  

a result, protons resonate at slightly different frequencies depending on their chemical 

environment. 

The resonance frequency of a nucleus, known as the Larmor frequency, depends on the 

gyromagnetic ratio (γ) and the magnetic field induction (B₀): 

𝑓𝐿𝑎𝑟𝑚𝑜𝑟  =    𝐵0 

Due to shielding, the effective resonance frequency is slightly shifted and described by: 

𝑓𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =    𝐵0  (1 −  ) 

  where: 

  γ – gyromagnetic ratio (for protons: 42.58 MHz/T) 
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  B₀ – magnetic field induction 

  σ – shielding constant (depends on chemical environment) 

This shift allows us to distinguish signals from protons in different molecules, as they 

appear at distinct positions along the frequency axis of the spectrum (Tognarelli et al., 

2015). Frequency shifts, known as chemical shifts (), are expressed in Hertz (Hz) and are 

directly proportional to the magnetic field induction (B₀). To standardize spectra acquired 

on scanners with different field strengths, chemical shifts are typically reported in parts per 

million (ppm): 

 [Hz] = 𝑠𝑎𝑚𝑝𝑙𝑒 - 𝑟𝑒𝑓  

 [ppm] = 
𝑠𝑎𝑚𝑝𝑙𝑒− 𝑟𝑒𝑓

𝑟𝑒𝑓
  106

 

 

  where: 

  δ – chemical shift 

  𝑠𝑎𝑚𝑝𝑙𝑒 – resonance frequency of the measured proton [Hz] 

  𝑟𝑒𝑓 – reference frequency (typically tetramethylsilane, TMS) 

Historically, tetramethylsilane (Si(CH₃)₄) has been used as a reference standard for proton 

MRS (Harris et al., 2002). Because of this normalization, peaks of specific metabolites 

consistently appear at the same ppm values regardless of the magnetic field strength  

e.g., NAA at ~2.02 ppm and water at ~4.68 ppm. 

Higher magnetic field strengths improve spectral resolution, making it easier to resolve 

overlapping peaks. Additionally, the resonance of one proton can be affected by 

neighboring nuclei. When nearby hydrogen nuclei interact, the resulting spin-spin coupling 

leads to splitting of the spectral lines into multiplets, a phenomenon known as J-coupling 

(Faghihi et al., 2017). Each metabolite has a characteristic spectral “fingerprint,” with 

signals at specific frequencies and multiplet patterns. The MRS spectrum represents the 

sum of these individual spectral signatures, weighted by the concentration of each 

metabolite in the tissue. 
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We are able to observe a range of brain metabolites using ¹H-MRS. The most prominent 

ones are shown in Figure 1, which presents a representative spectrum with annotated peak 

positions. 

Figure 1. Spectrum reprinted from A Comprehensive Review of the ¹H-MRS Metabolite Spectrum in Autism 

Spectrum Disorder (Ford & Crewther, 2016). Licensed under CC BY. 

The metabolite concentrations listed in Table 1 represent approximate physiological ranges 

observed in the adult human brain. These values have been rounded for clarity and are 

based on Govindaraju et al. (2000) and the ISMRS lecture by Ulrike Dydak (2023). 

Table 1. Representative brain metabolites detectable with ¹H-MRS (The concentrations of metabolites are 

calculated as area under the peak corresponding to this metabolite). 

Metabolite Function Concentration Notes 

N-acetylaspartate 

(NAA) 

Neuronal marker 

(neuronal density) 

~ 8-16 mM Marker of neuronal 

integrity 

Total creatine (tCr) Energy buffer ~ 5-10 mM Marker of energy 

metabolism 
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Choline (Cho) Reflects: membrane 

synthesis and 

degradation 

~ 1-2.5 mM Important in cancer 

diagnostics 

Lactate (Lac) End product of 

anaerobic 

glycolysis 

< 2 mM Elevated in 

pathology 

Glutamate (Glu) Excitatory 

neurotransmitter 

~ 6-12 mM Important for 

learning and 

memory 

gamma-

aminobutyric acid 

(GABA) 

Inhibitory 

neurotransmitter 

~ 1-2 mM Balances excitatory 

activity  

Glutathione (GSH) Antioxidant ~ 2-3 mM Protects against 

oxidative stress 

Myo-Inositol (mI) Glial marker, 

necessary for cell 

growth 

~ 4-8 mM Important for cell 

osmoregulation 

Another important physical parameter in MRS is relaxation time. The longitudinal 

relaxation time (T₁) describes the time needed for magnetization to recover along the 

longitudinal axis (B₀ direction), reaching approximately 63% of its equilibrium value.  

T₁ depends on the metabolite, tissue type, and field strength, and typically exceeds 1 second 

(Li et al., 2012). To allow full recovery of longitudinal magnetization, the repetition time 

(TR) should ideally be more than five times longer than T₁. In practice, however, long TRs 

increase scan duration, while short TRs reduce the signal-to-noise ratio. A typical TR in 

single-voxel ¹H-MRS experiments is ~1–3 seconds. The transverse relaxation time (T₂) 

describes the signal decay of transverse magnetization due to microscopic field 

inhomogeneities and spin–spin interactions. Because the MR signal decays rapidly, it is 

necessary to select an appropriate echo time (TE) to capture a reliable signal. Spectra 

acquired with different TEs should not be directly compared, as TE significantly affects 

signal intensity and metabolite visibility.  

A related parameter is the effective relaxation time (T₂*), which describes the signal decay 

in the free induction decay (FID). In addition to the microscopic processes contributing to 

T₂, T₂* is also affected by macroscopic magnetic field inhomogeneities. As a result, T₂* is 
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shorter than the theoretical T₂ and varies depending on the metabolite, tissue composition 

(gray vs. white matter), field homogeneity, and magnetic field strength (Li et al., 2012; 

Chavhan et al., 2009). Field inhomogeneities cause faster FID decay (i.e., shorter T₂* 

relaxation times), resulting in broader, lower-intensity peaks and distortions in spectral line 

shapes. To minimize these effects and improve magnetic field homogeneity within the 

analyzed voxel, a procedure called shimming is applied. It involves passing electrical 

currents through shim coils to correct for field inhomogeneities. The optimal amount of 

current in each shim coil is measured and calculated using dedicated algorithms such as 

FASTMAP (Gruetter, 1993). Detailed recommendations on best practices for achieving 

magnetic field homogeneity in MRS have been provided in the expert consensus statement 

by Juchem et al. (2021). 

MRS data can be acquired using several types of pulse sequences. One of the most 

commonly used is PRESS (Point RESolved Spectroscopy), which provides high signal 

intensity and is relatively robust. However, PRESS sequence, which employs two 

refocusing pulses, is technically limited in achieving echo times shorter than approximately 

30 ms (Klose, 2008; Moonen et al., 1989). An alternative is the STEAM (STimulated Echo 

Acquisition Mode) sequence, which allows for shorter echo times and more efficient water 

suppression. However, a stimulated echo sequence provides only half the signal intensity 

compared to PRESS, and is more sensitive to motion (Moonen et al., 1989; Klose, 2008). 

A more recent approach is the semi-LASER (Localization by Adiabatic SElective 

Refocusing) sequence (Deelchand et al., 2021), which is increasingly recommended, 

particularly at high and ultra-high field strengths, due to its full signal intensity and reduced 

chemical shift displacement error (CSDE). It has been endorsed by the international MRS 

consensus group as a preferred localization technique (Wilson et al., 2019). For quantifying 

metabolites that are present at low concentrations and strongly overlapped with others, such 

as GABA, spectral editing sequences like MEGA-PRESS are commonly used (Peek et al., 

2023). 

Several known sources of spectral distortion may affect the quality of MRS data. 

Field inhomogeneity leads to broader and overlapping peaks but can be mitigated through 

proper shimming. Subject motion can result in voxel misplacement, frequency or phase 

shifts, and signal degradation. These artifacts may be corrected during preprocessing by 

removing motion-corrupted averages and applying frequency and phase alignment 
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(Andronesi et al., 2021). Another major issue is the CSDE, which causes spatial 

misalignment of metabolite signals and is especially problematic in single-voxel 

spectroscopy at high magnetic field strengths (e.g., 7T). This can be addressed by using 

sequences with high-bandwidth radiofrequency RF pulses (such as semi-LASER) and 

increased gradient strength. Contamination from unsuppressed water or lipids is also  

a common concern. Water suppression is typically applied during acquisition using 

methods like VAPOR (Tkáč et al., 2021), and residual water can be removed during 

preprocessing. These corrections are considered critical in both clinical and research 

settings. Additional artifacts, such as ghosting (reduced by better field homogeneity) and 

eddy currents (corrected during preprocessing), should be taken into account during 

protocol setup and corrected afterward if necessary. 

MRS data must be preprocessed to minimize artifacts and prepare for accurate 

quantification. The following steps are recommended: eddy current correction, removal of 

motion-corrupted signals, frequency and phase drift correction, spectral alignment, removal 

of residual water, lipids and spurious echoes, RF coil combination, and signal averaging 

(Near et al., 2021). 

To distinguish individual metabolites in an MRS spectrum, a basis set is used. A basis set 

is a linear combination of spectral signals from metabolites, each with its own characteristic 

spectral signature that depends on acquisition parameters such as pulse sequence and echo 

time (see Figure 2). The number of metabolites included in the basis set is selected based 

on prior knowledge about which compounds can be reliably detected under the specific 

acquisition conditions. In addition, macromolecular (MM) signals should be included, 

especially for short-echo-time sequences, as MM resonances have short T₂ relaxation times, 

broad frequency spectrum, and can overlap with metabolite signals (Near et al., 2021; 

Cudalbu et al., 2021). Basis spectra are typically generated using specialized simulation 

tools or experimental measurements. The acquired MRS data are then fitted to the basis set, 

and the concentration of each metabolite is estimated as the area under the curve 

corresponding to its fitted spectral component. The choice and parameterization of the basis 

set, including the inclusion of macromolecular signals, can significantly influence 

quantification outcomes, as demonstrated by Hofmann et al. (2002), who showed that 

metabolite concentrations and fitting errors vary depending on the basis set composition 

and modeling approach. 
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Figure 2. A basis set (left) incorporates chemical shifts, T₂ relaxation times, and line shapes of expected 

metabolites. The basis set is used to extract a corrected spectrum of the detected components from noisy raw 

data (lower right). Adapted from Boska et al., 2014, as reproduced on mriquestions.com (under CC BY 

license). 

Metabolite concentrations can be quantified using a water reference or an external sample 

for absolute quantification, or by using another metabolite as a reference for relative 

quantification. When using water as a reference, concentrations are typically expressed in 

molarity (mol/L) or molality (mol/kg), with the latter takes into account variations in water 

distribution in tissue. One of the main advantages of water referencing is that it can be 

directly compared between different experiments and settings. Water does not overlap with 

metabolite peaks, has a concentration approximately 10⁴ times higher than that of 

metabolites, and is affected by the same pulse sequence as the metabolites of interest. 

Alternatively, another metabolite, such as total creatine (tCr), may be used as a reference, 

in which case concentrations are reported as ratios. This approach avoids the need for  

an additional water scan and assumptions related to different relaxation times of water and 

metabolites (Near et al., 2021). 

The quality of the MRS data should be first assessed visually to exclude spectra with major 

artifacts or those lacking clear metabolite signals. Following visual inspection, the spectra 

are usually evaluated based on technical parameters. The commonly applied criteria in 

single-voxel spectroscopy include a linewidth of less than 13 Hz at 3 T, a Cramér-Rao 

lower bound (CRLB) of 20% or less, and a signal-to-noise ratio (SNR) for  

N-acetylaspartate (NAA) above 10 for singlet metabolites and above 20 for multiplet 

signals such as glutamate (Maudsley et al., 2021). Minimum thresholds recommended by 
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experts to ensure reliable quantification include a CRLB below 50%, an SNR greater than 

3 for individual MRS signals to allow for frequency and phase correction, and a linewidth 

below 19 Hz for 7 T scanners or below 13 Hz for 3 T scanners (Öz et al., 2021). 

When comparing magnetic resonance spectroscopy performed at lower and higher 

magnetic field strengths, such as 3 T versus 7 T (as discussed in Pradhan et al., 2015, and 

references therein), several advantages of high-field scanners become evident. Magnetic 

resonance spectroscopy at 7 T benefits from increased signal-to-noise ratio (SNR) and 

improved spectral resolution (Gruetter et al., 1998; Tkáč et al., 2009). This enhanced 

spectral quality reduces uncertainty in metabolite quantification (Tkáč et al., 2009; Mekle 

et al., 2009) and enables the estimation of metabolites present at low concentrations, which 

at lower fields typically require specialized editing sequences (Mescher et al., 1998). 

However, high magnetic field strength also introduces technical challenges. These include 

increased magnetic field inhomogeneities (both B₀ and B₁), which can reduce SNR, as well 

as longer T₁ and shorter T₂ relaxation times. Additionally, higher field strength leads to 

increased radiofrequency (RF) power deposition, expressed as the specific absorption rate 

(SAR), and an elevated CSDE. To address these limitations, partially adiabatic pulse 

sequences such as semi-LASER are recommended for high-field MRS acquisitions (Öz et 

al., 2021). Adiabatic pulses provide more uniform flip angles, independent of B₁ field 

variations, which further improve SNR (Sacolick et al., 2007; Tannus & Garwood, 1997). 

Furthermore, the use of RF pulses with relatively high bandwidth helps to reduce CSDE. 

A major advantage of semi-LASER over fully adiabatic sequences like LASER is its 

reduced SAR, due to a lower number of RF pulses (Garwood & DelaBarre, 2001). 

1.1.2. MRS analysis software 

As MRS has become more widely adopted in both research and clinical settings, a growing 

number of software tools for analyzing MRS data have been developed. However, 

quantification of MRS spectra remains a significant challenge due to their inherent 

complexity. Spectra are composed of overlapping signals from multiple metabolites, and 

are often affected by variable lineshapes, unpredictable baselines, and signal contamination 

from lipids and macromolecules. Artifacts and low signal-to-noise ratios can further 

complicate interpretation, particularly at lower magnetic field strengths. 
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Another major obstacle in MRS analysis is the lack of standardized data formats. Each 

scanner vendor uses its own proprietary file structure: for example, Siemens data may be 

stored as .dat (Twix), rda, or MRS DICOM files; GE uses .7 (p-files); and Philips typically 

relies on SPAR/SDAT. On top of that, different analysis software packages support 

different formats, LCModel requires .RAW files, jMRUI supports .mrui, and FSL-MRS is 

compatible only with .nii (NIfTI-MRS, Clarke et al. 2022). This diversity in file formats 

and processing requirements further emphasizes the need for clear and standardized 

workflows in MRS data analysis. Given the diversity and fragmentation of available tools, 

it is crucial to understand their capabilities and limitations in order to select appropriate 

software for specific research purposes. 

LCModel is one of the most widely used software packages for ¹H-MRS analysis.  

It automatically fits spectra using the Linear Combination of Model Spectra approach, 

providing high-precision estimates of metabolite concentrations. The quantification 

process is highly automated and user-independent, which reduces inter-operator variability 

and improves reproducibility. Designed to be robust against common MRS data quality 

issues such as noise, residual water signals, and baseline distortions, the software can still 

produce suboptimal fits when the acquired spectrum fails to meet minimum signal-to-noise 

ratio or resolution thresholds. To improve performance in challenging cases, it applies prior 

constraints on certain metabolite ratios, though these assumptions are not always accurate. 

In recent years, the developer has made licenses freely available for academic use. 

Nevertheless, the tool remains closed-source, limiting transparency and preventing full 

insight into its computational methods. Despite these limitations, LCModel is still regarded 

as the gold standard for automated ¹H-MRS quantification (Provencher, 1993; Provencher, 

2001). 

Tarquin is another popular software package for analyzing ¹H-MRS data. It is a free,  

open-source program written in C++, originally developed to support both in vivo MRS 

and ex vivo high-resolution magic angle spinning (HR-MAS) spectroscopy, particularly 

for the study of brain tumors and other pathologies (Wilson et al., 2011). It features  

an intuitive graphical user interface (GUI), which allows users to easily perform basic MRS 

analyses. However, Tarquin does not currently support the Siemens .twix file format, and 

the software has not been actively developed in recent years, the last version was released 

in 2018 (https://tarquin.sourceforge.net/).   

https://tarquin.sourceforge.net/
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jMRUI is a software package dedicated to the analysis of MRS and MRSI data, developed 

in Java. It features a user-friendly graphical interface, which facilitates access to the 

program’s advanced processing and quantification capabilities (Mocioiu et al., 2015; Stefan 

et al., 2009). The software is freely available for non-commercial and academic use upon 

registration and acceptance of a license agreement (http://www.jmrui.eu). 

Osprey is a free, open-source, MATLAB-based software package for MRS data analysis. 

It was developed to improve standardization, transparency, and accessibility in MRS data 

processing pipelines. Osprey supports a wide range of editing and non-editing sequences, 

including MEGA-PRESS, making it suitable for analyzing GABA and other edited 

metabolites (Oeltzschner et al., 2020). The software integrates multiple processing steps, 

from raw data conversion to quantification and quality control, in a single pipeline and it is 

well-suited for both single-subject and group-level analyses. 

Gannet is a free, open-source MATLAB-based software tool specifically designed for 

analyzing edited single-voxel ¹H-MRS data, with a primary focus on GABA quantification. 

It offers a largely automated analysis pipeline, requiring minimal user interaction, and 

supports the MEGA-PRESS sequence commonly used in edited MRS acquisitions (Edden 

et al., 2014). Gannet has become a widely used tool in both clinical and research settings 

for its simplicity and reliability in GABA+ signal quantification. 

FID-A (FID Appliance) is an open-source MATLAB-based software package designed for 

simulating and processing MRS data (Simpson et al., 2017). The toolbox is particularly 

useful for converting raw MRS data from vendor-specific formats into formats compatible 

with other commonly used processing tools. In addition, FID-A enables the simulation of 

custom basis sets, which can be integrated into quantification pipelines such as LCModel 

or Tarquin. Its flexibility and open architecture make it a valuable resource for advanced 

MRS research and method development. 

Suspect is a free, open-source Python-based toolkit for processing MRS data, particularly 

aimed at preparing datasets for quantification using LCModel and other tools. It offers  

a complete preprocessing pipeline based on the expert consensus recommendations for 

MRS data handling (Near et al., 2021). The pipeline is implemented in an interactive 

Jupyter Notebook environment, allowing for easy, real-time modifications and 

visualization. Suspect is especially useful for researchers who prefer flexible, scriptable 

http://www.jmrui.eu/
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workflows and want to integrate MRS processing with modern Python-based analysis 

ecosystems. 

Vespa (Versatile Simulation, Pulses, and Analysis) is a Python-based, open-source toolkit 

designed for spectral simulation, interactive data processing, and RF pulse design in 

magnetic resonance spectroscopy (Soher et al., 2023). The software enables users to create 

synthetic MRS datasets, prototype custom acquisition schemes, and simulate basis sets 

compatible with quantification tools such as LCModel. Vespa also includes a powerful RF 

pulse design module, making it a useful platform for developers working on novel MRS 

sequences and methods. 

Finally, FSL-MRS, is a free, open-source, Python-based toolbox for end-to-end analysis of 

MRS data (Clarke et al., 2021). It provides a modular and fully integrated pipeline, 

including data conversion (via spec2nii), preprocessing, spectral simulation, model fitting, 

quantification, and advanced visualization. Released in June 2020, FSL-MRS is a highly 

active and rapidly evolving project, with over 60 version updates in March 2025. Its 

transparent architecture and full compatibility with the NIfTI-MRS standard make it 

particularly well-suited for reproducible MRS research. Importantly, FSL-MRS is currently 

the only MRS software package equipped with a dedicated dynamic fitting module, 

specifically designed for fMRS data analysis (Clarke et al., 2024). This makes it a unique 

and powerful tool for studying neurochemical dynamics during cognitive or sensorimotor 

tasks. 

In addition to the major software packages described above, there are several other tools 

developed for MRS data processing and analysis. These include: 

• CloudBrain-MRS: a cloud-based computation platform that integrates LCModel 

and advanced deep learning algorithms for denoising and quantification (Chen et 

al., 2024), 

• MRSCloud: a web-based application for simulating basis sets (Hui et al, 2022), 

• MRS DeIdentification Tools – designed to remove protected health information 

(PHI) from MRS data 

(https://github.com/schorschinho/MRSDeIdentificationTools), 

• INSPECTOR: a versatile platform for processing, analyzing, and visualizing MRS 

data (Gajdošík et al., 2021), 

https://github.com/schorschinho/MRSDeIdentificationTools
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• MARSS: a tool for fast and high-precision basis set simulation (Landheer et al., 

2021),  

• MRspa: a software for post-processing and quantification of MRS data (Deelchand 

D. MRspa: Magnetic Resonance signal processing and analysis. Available at: 

https://www.cmrr.umn.edu/downloads/mrspa/).  

The sheer number and diversity of MRS-related tools reflects the growing interest in MRS. 

However, it also highlights a lack of standardization in the field: most of these programs 

are not widely adopted, and few researchers use multiple tools concurrently. This 

fragmentation may limit the reproducibility of analyses and the community’s ability to 

detect methodological errors. Furthermore, many of these tools were developed as part of 

individual research projects, and are non-commercial, which may impact long-term support 

and documentation 

1.1.3. Functional magnetic resonance spectroscopy 

Functional magnetic resonance spectroscopy (fMRS) is an innovative neuroimaging 

technique that enables the measurement of metabolite concentrations during brain 

activation in response to various types of stimulation. In contrast to conventional MRS, 

which typically captures resting-state metabolite levels, fMRS allows researchers to 

investigate dynamic, time-resolved neurochemical responses that occur during cognitive, 

sensory, or motor tasks. This ability to capture the temporal dimension of neurochemical 

changes offers unique insights into the biological mechanisms underlying brain function 

(Stanley & Raz, 2018). In particular, fMRS has proven especially valuable in detecting 

task-related modulations in glutamate, a key excitatory neurotransmitter involved in 

synaptic plasticity, learning, and cognitive processing. 

Although fMRS is based on the same physical principles, pulse sequences, and acquisition 

parameters as standard MRS, it differs in its experimental paradigm. Participants typically 

perform simple tasks, visual, motor, or cognitive, while remaining as still as possible to 

avoid motion-related artifacts. Data are acquired in alternating periods of task and rest, with 

rest intervals assumed to reflect baseline metabolite levels. Importantly, individual MRS 

signals (transients) are analyzed separately rather than averaged across the entire 

acquisition. Depending on the study design, these signals can be grouped by condition  

(e.g., task vs. rest) or modeled individually in a time-resolved manner. Most fMRS studies 

https://www.cmrr.umn.edu/downloads/mrspa/
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target glutamate, alone or combined with glutamine (Glx), as well as GABA, the main 

inhibitory neurotransmitter. 

Despite the promising potential of fMRS, several methodological challenges must be 

addressed to ensure accurate and interpretable results. One of the main challenges in fMRS 

is contamination of the spectra by the blood oxygenation level–dependent (BOLD) effect. 

BOLD-related changes in local magnetic fields can affect spectral line shapes. These effects 

typically manifest as line narrowing and associated amplitude changes, which may reduce 

the accuracy of metabolite quantification (Stanley & Raz, 2018; Mangia et al., 2006). 

Several strategies have been proposed to reduce these effects. An early method was line 

broadening correction, where activation spectra are artificially broadened to match the 

baseline spectrum and minimize fitting errors (Mangia et al., 2007; Schaller et al., 2014). 

Another approach is the simultaneous acquisition of BOLD and fMRS, which allows direct 

modelling of the BOLD signal alongside neurochemical data, helping to separate vascular 

from metabolic effects (Ip et al., 2017; Ip et al., 2019). More recently, model-based 

approaches have been developed, using general linear models with the hemodynamic 

response function as a regressor during spectral fitting. This enables direct estimation of 

metabolite changes while accounting for BOLD effects (Clarke et al., 2024). However, the 

BOLD response in fMRS is still less well understood than in functional magnetic resonance 

imaging (fMRI). Its influence on quantification reliability and interpretation remains 

uncertain, especially in regions with low signal-to-noise ratio or in event-related designs 

(Liu et al., 2025). This uncertainty poses a major challenge for standardization and broad 

application of fMRS in cognitive neuroscience. 

Another critical limitation of fMRS is its relatively low signal-to-noise ratio (SNR) and the 

subtle magnitude of metabolite concentration changes, which together result in reduced 

sensitivity (Liu et al., 2025). To overcome this, fMRS studies often require larger sample 

sizes, sometimes several dozen participants, to achieve sufficient statistical power. 

Additionally, longer acquisition times help improve SNR by increasing the number of MRS 

transients collected. However, prolonged scanning increases the risk of motion artifacts and 

may reduce participants’ ability to maintain attention and task engagement. Another 

challenge associated with longer acquisitions is frequency drift, which can compromise 

spectral quality over time. fMRS is highly sensitive to magnetic field inhomogeneities, and 

even small fluctuations, arising from frequency drift or physiological factors such as 
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breathing, can affect quantification accuracy. Since individual MRS signals (transients) are 

analyzed separately, these subtle shifts in magnetic field can propagate into the final results 

and lead to misinterpretations. 

Although several mechanisms have been proposed to explain metabolite changes observed 

with fMRS, their exact biological origins remain unclear (Pasanta et al., 2023; Buxton, 

2009). Proposed explanations include increased energy metabolism via the tricarboxylic 

acid (TCA) cycle (Dienel, 2012; Magistretti & Allaman, 2015), neurotransmitter release 

into the synaptic cleft during neuronal activation (Buxton, 2009), astrocyte-mediated 

glutamate–glutamine cycling (Sibson et al., 1998; Rothman et al., 2003), and longer-term 

neuroplastic processes involving brain-derived neurotrophic factor (BDNF) signaling 

(Gonçalves-Ribeiro et al., 2019; Valtcheva & Venance, 2019). Additionally, GABA levels 

may reflect a shift in excitation/inhibition balance (Just et al., 2013; Lynn et al., 2018) or 

general inhibitory tone rather than phasic neurotransmission (Rae, 2014; Peek et al., 2020). 

Since fMRS captures the total metabolite pool within the voxel, it is currently not possible 

to disentangle synaptic, metabolic, and vesicular contributions to the measured signal, 

warranting caution in interpretation (Puts & Edden, 2012; Takado et al., 2021). 

Furthermore, these mechanisms are likely to operate on different timescales and may 

contribute to the measured signal at varying points following task onset.  

A key challenge in interpreting fMRS findings is the limited understanding of how 

metabolite concentrations, particularly glutamate, change over time following stimulation. 

This uncertainty complicates experimental design, especially the timing of signal 

acquisition relative to task onset. In an effort to address this, Mullins (2018) proposed  

a theoretical glutamate response function (GRF) based on a meta-analysis of existing fMRS 

studies (see Figure 3). Although the GRF serves as a useful conceptual tool, the actual 

dynamics of glutamate in the human brain remain unknown, due in part to the unresolved 

biological mechanisms (hypothetically related to neurotransmission). 
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Figure 3. Hypothesized Glutamatergic Response Function (GRF). Adapted from Mullins (2018), under CC 

BY license. 

An important methodological decision in fMRS studies concerns the choice between block 

and event-related designs (Apšvalka et al., 2015; Koolschijn et al., 2023). In block designs, 

spectra are acquired in alternating periods of stimulation and rest, typically lasting several 

minutes each. Signals from each condition are averaged separately, and the resulting 

spectra are compared. While this approach improves signal-to-noise ratio, it offers limited 

temporal resolution. In contrast, event-related designs involve the acquisition of individual 

transients for each stimulus, with conditions presented in a randomized or intermixed 

fashion. This allows for higher temporal resolution and finer modeling of metabolite 

dynamics, but substantially increases analytical complexity. There is currently no 

consensus on which fMRS design is superior for capturing task-related neurochemical 

dynamics. A meta-analysis by Mullins (2018) suggested that event-related designs reveal 

greater glutamate responses to stimulation, likely due to better temporal resolution. 

Similarly, Pasanta et al. (2023), in a comprehensive review of 49 studies, reported larger 

effect sizes for event-related paradigms. However, they also found that block designs 

produced more consistent and reproducible results, likely due to higher signal-to-noise 

ratios. These findings highlight a trade-off between sensitivity and reliability, and 

underscore the importance of aligning the paradigm choice with the research question and 

analytical capabilities. 

Functional magnetic resonance spectroscopy (fMRS) has been used to study many brain 

regions, stimulation types, and metabolites, with mixed results. In the visual cortex, early 

studies reported rapid lactate increases during flashing light stimulation (Prichard et al., 

1991). Later work in V1 found small but significant glutamate (or Glx) increases during 

visual checkerboard tasks (Ip et al., 2017; Yakovlev et al., 2022), and decreases in GABA 
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were reported in the dark, without visual input (Kurcyus et al., 2018). Motor tasks did not 

show significant glutamate increases in the motor cortex (Kolasinski et al., 2019), whereas 

sustained finger tapping was associated with combined lactate and glutamate rises (Schaller 

et al., 2014). Pain-related tasks in the cingulate cortex have consistently shown glutamate 

increases during thermal or pressure pain (Archibald et al., 2020; Jelen et al., 2021). 

Cognitive and imagery tasks have produced region-specific effects, such as higher Glx in 

the medial prefrontal cortex of competitive swimmers during motor imagery (Huang et al., 

2015) or glutamate increases in the dorsolateral prefrontal cortex during high  

working-memory load (Woodcock et al., 2018). Social processing studies have not reported 

higher glutamate in the superior temporal sulcus when viewing dynamic social stimuli 

compared to non-social stimuli, with observed changes instead related to visual processing 

in V1 (Pasanta et al., 2024). Overall, this research shows that fMRS can detect task-related 

neurochemical changes, but results vary, and methodological differences remain a major 

challenge. 

Among the many cognitive domains that could be explored using fMRS, reading is 

particularly well suited for investigation. Reading engages a well-characterized network of 

brain regions that could serve as robust regions of interest for neurochemical measurement. 

By targeting these regions, fMRS offers the potential to reveal task-related metabolite 

changes that may underlie reading skill and its impairments. However, to date, no studies 

have directly investigated this topic. 

1.2.  Dyslexia 

Dyslexia is a specific learning disorder that causes difficulties in the acquisition of reading 

skills. These difficulties cannot be explained by lower intelligence, vision impairment, poor 

access to education, or inappropriate teaching methods. Children with dyslexia often 

experience lower self-esteem, anxiety, depression, and a lack of confidence in their reading 

abilities (Wilmot et al., 2023). 

In every language, 5-12% of children struggle with slow and inaccurate reading that does 

not improve over time. Interestingly, many studies suggest that developmental dyslexia 

occurs more frequently in males than in females (Arnett et al., 2017). Additionally, the risk 

of dyslexia increases to 45% among children who have a first-degree relative with reading 

difficulties (Snowling & Melby-Lervåg, 2016). This points to a genetic factor, with some 



 27 

studies proposing specific genes involved in dyslexia (Fisher & Francks, 2006; Bieder et 

al., 2020). Despite decades of research on reading disorders, the underlying causes of 

dyslexia remain unknown, and many theories have been proposed to explain the 

mechanisms behind developmental dyslexia. 

One theory suggests that a deficit in phonological processing underlies dyslexia (Schwarz 

et al., 2024; Ramus et al., 2013; Snowling, 2001). This theory posits that dyslexia arises 

from difficulties in processing the sounds of language (phonemes) and associating them 

with letters (graphemes). Individuals with dyslexia may struggle with recognizing and 

manipulating these sounds, which are essential for reading and spelling. Phonological 

processing is critical not only for decoding words but also for encoding them, which 

impacts reading fluency, writing, and spelling accuracy. These difficulties often manifest 

as trouble with tasks like rhyme detection, phoneme segmentation, and non-word 

repetition. Additionally, while phonological processing deficits are an indicator of dyslexia, 

the severity and specific nature of these deficits can vary, with some individuals exhibiting 

better compensatory strategies than others, such as relying more on semantic or visual 

memory. Based on the hypothesis that phonological processing difficulties lie at the core 

of developmental dyslexia, an extended theory known as the double-deficit hypothesis has 

been proposed. This hypothesis suggests that dyslexia may result from deficits in both 

phonological awareness and rapid automatized naming (RAN), the latter referring to the 

ability to name visual stimuli aloud as quickly as possible (Wolf & Bowers, 1999). 

Supporting this view, a study conducted on Polish-speaking children found that 51% of 

those with dyslexia exhibited a phonological deficit, while 26% showed a RAN deficit. 

Notably, both deficits coexisted in 14% of the dyslexic sample (Dębska et al., 2022). 

Another theory regarding the origin of dyslexia is the visual processing deficit hypothesis, 

which proposes impairments in visual processing, particularly in the dorsal visual stream 

that is responsible for spatial attention and the sequential processing of letters. Individuals 

with dyslexia may have difficulties perceiving and accurately recognizing letters, 

especially when tasks require rapid or sequential visual processing. This visual attention 

deficit can contribute to difficulties with reading, including issues with phoneme-grapheme 

correspondence (Vidyasagar & Pammer, 2010). 

Recently, the neural noise hypothesis has been proposed, suggesting that dyslexia might be 

caused by neuronal hyperexcitability, which leads to difficulties in distinguishing relevant 
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signals from background noise (see Figure 4). This theory posits that increased 

concentrations of glutamate (Glu), the primary excitatory neurotransmitter, contribute to 

this hyperexcitability, impairing the precision of neural firing and the synchronization of 

neural networks, particularly in the left superior temporal cortex, a region critical for 

phonological processing. As a result, individuals with dyslexia may struggle with the 

accurate processing of auditory and visual stimuli, leading to challenges in phonological 

processing and the integration of visual symbols with their corresponding speech sounds. 

The hypothesis also suggests that genetic risk factors, such as mutations in the DCDC2 and 

KIAA0319 genes, could influence neural excitability and contribute to the development of 

neural noise. Understanding the role of neural noise in dyslexia offers potential avenues for 

intervention, including brain stimulation techniques (e.g., tDCS, TMS) or pharmacological 

treatments that modulate neural excitability and restore the balance between excitatory and 

inhibitory signals (Hancock et al., 2017). 

 

Figure 4. Simplified schematic of the neural noise hypothesis in dyslexia (based on Figure 1 from Hancock 

et al., 2017).  
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1.2.1. The neural basis of reading and dyslexia 

Although the reading network encompasses multiple left-hemispheric brain regions 

(Dehaene, 2009), the most critical areas include the visual word form area (VWFA) for 

orthographic processing, the superior temporal gyrus/sulcus (STG/STS) for phonological 

processing, and the inferior frontal gyrus (IFG) for higher-order language integration. 

The Visual Word Form Area (VWFA), a region located in the left fusiform gyrus of the 

ventral occipito-temporal cortex, is critically involved in the recognition of written words 

and is considered a key component of the neural circuitry underlying fluent reading. This 

region exhibits stronger responses to visually presented words than to other types of visual 

stimuli matched for complexity. Functional imaging studies have shown that the VWFA is 

more strongly activated by familiar scripts compared to line drawings, digit strings, or 

unfamiliar characters, indicating its specialized role in processing orthographic information 

(Dehaene & Cohen, 2011). In children with dyslexia, reduced VWFA activation during 

reading is a consistent finding across many orthographies (see Chyl et al., 2021 for review). 

Functional MRI data from a large cohort of school-aged children revealed significantly 

lower word-related activation in this area also among poor readers (Brem et al., 2020). 

Furthermore, the degree of VWFA hypoactivation was proportional to the severity of 

reading difficulties, suggesting a strong link between visual word form processing and 

impaired reading development (Brem et al., 2020). In addition to its role in visual word 

recognition, the VWFA demonstrates functional and structural connectivity with both 

language-related and attentional brain networks (Chen et al., 2019). Analysis of large-scale 

neuroimaging data has revealed that connectivity between the VWFA and the lateral 

temporal language network predicts linguistic skills, whereas its connectivity with the 

dorsal fronto-parietal attention system is associated with visuo-spatial attention. This 

pattern of distinct and functionally meaningful connections supports a multiplex model in 

which the VWFA integrates linguistic and attentional processes, rather than operating 

solely within the reading network (Chen et al., 2019). 

The left superior temporal sulcus (STS), located in the posterior region of the superior 

temporal lobe between the superior and middle temporal gyri, plays a key role in language 

processing as well as cross-modal integration, particularly in mapping auditory and visual 

linguistic input. It responds to both auditory and visual stimuli, reflecting its function as  

a multisensory hub (van Atteveldt et al., 2004). This region is considered essential for the 
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formation of robust letter–speech sound (LSS) integration, a process fundamental to early 

reading acquisition. In typical readers, this process is characterized by robust congruency 

effects, i.e., differential activation in response to congruent compared to incongruent LSS 

pairs. Effective LSS integration is linked to bilateral activity in the heteromodal STS and 

surrounding auditory regions, including the planum temporale (Richlan et al., 2019). 

Findings from longitudinal studies support the involvement of STS in reading development. 

For instance, a study of Polish-speaking children aged 7 to 9 revealed increased activation 

in the left superior temporal cortex and bilateral inferior frontal cortex for multisensory 

over unisensory LSS stimuli with time and reading experience (Beck et al., 2024). In 

individuals with dyslexia, reduced activation of the superior temporal gyrus (STG) and STS 

has been observed during audiovisual tasks, suggesting impaired responsiveness to 

multisensory input (Ye et al., 2017).  Additionally, abnormalities in gray matter distribution 

within the temporal voice area, a subregion of the STS, have been reported in adults with 

dyslexia (Dole et al., 2013). These findings are consistent with broader evidence of reduced 

gray matter volume in the left STS and right STG in dyslexia across different alphabetic 

orthographies (Richlan et al., 2020). A recent meta-analysis including both alphabetic and 

logographic orthographies has confirmed the left STG/STS as a region consistently 

showing hypoactivation and reduced gray matter volume in dyslexia across many 

languages (Yan et al., 2021). 

Finally, the left inferior frontal gyrus (IFG), particularly within Broca’s area, plays  

a foundational role in reading by mediating phonological decoding, lexical retrieval, and 

the integration of orthographic and semantic information (Heim et al., 2005). Similar to the 

left superior temporal gyrus (STG), it is part of the language network and becomes involved 

in reading following literacy acquisition (Chyl et al., 2018). The exact nature of left IFG 

dysfunction in developmental dyslexia remains controversial. While numerous fMRI and 

meta-analytic studies have documented reduced activation of the left IFG in individuals 

with developmental dyslexia (e.g., Martin et al., 2016), other investigations have reported 

increased activation in this region (e.g., Georgiewa et al., 2002; Hoeft et al., 2007). Such 

discrepancies may reflect differences in task type and difficulty, orthographic transparency 

(Martin et al., 2016; Yan et al., 2021). Moreover, structural neuroimaging studies have 

reported reduced gray matter volume in the left IFG (e.g., Jednoróg et al., 2014), although 

this finding is less consistently observed than reductions in the left STG/STS in  

meta-analyses. 
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1.2.2. Sex differences in dyslexia  

Dyslexia is diagnosed more often in males than in females, with a ratio of about 3:1 (Yang, 

2022) or even 5:1 (Arnett et al., 2017). Historically, more male subjects were included in 

studies (65% in children and 95% in adults), and the assumption that females have the same 

dyslexic profile could be incorrect (Krafnick & Evans, 2019). Nowadays, when study 

samples are balanced with regard to sex, the framework for interpretation is still often based 

on theories constructed for cohorts with a male predominance (Krafnick & Evans, 2019). 

Previous studies have found significantly greater variability and lower mean performance 

in reading skills for males, which leads to their overrepresentation in the low-performance 

tail of the reading distribution (Arnett et al., 2017). It has also been shown that males have 

slower processing speeds and worse inhibitory control but perform better in verbal 

reasoning tasks (Arnett et al., 2017). However, results in phonemic awareness or working 

memory did not differ between the sexes (Arnett et al., 2017). On the other hand, Krafnick 

and Evans (2019) point out that females with dyslexia tend to have higher IQ scores, 

perform better in working memory tasks, and are more proficient in orthographic coding. 

They also observed sex differences in visual prediction tasks, where males with dyslexia 

focused on the current target, while females were able to predict subsequent targets more 

quickly (Krafnick & Evans, 2019). To date, only few MRI study have included sex as  

a variable of interest when examining dyslexia effects. For example, Evans and colleagues 

(2014) reported that dyslexic males exhibited reduced gray matter volume in the left 

temporo-parietal cortex, whereas in females, differences were found outside the canonical 

reading network, primarily in the right hemisphere.  

1.2.3. MRS studies of dyslexia 

Several MRS studies have examined brain metabolite concentrations in individuals with 

dyslexia. The first study employing proton magnetic resonance spectroscopy (¹H-MRS) 

was conducted on 29 adult males (14 with dyslexia and 15 typical readers), with  

single-voxel MRS data acquired bilaterally from the temporo-parietal cortex and the 

cerebellum (Rae et al., 1998). A significantly decreased choline-to-N-acetylaspartate 

(Cho/NAA) ratio was observed in the left temporo-parietal cortex and the right cerebellum 

in the dyslexic group. Additionally, a lateralized biochemical difference was found in both 

brain regions among dyslexic participants, which was not present in controls. A year later, 
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an investigation used magnetic resonance spectroscopic imaging (MRSI) to examine brain 

lactate metabolism during language-related and non-language cognitive tasks (Richards et 

al., 1999). The study included six boys with dyslexia and seven typically developing boys. 

MRSI data were collected while participants performed three phonological tasks and one 

non-language task. Results showed that, during phonological tasks, children with dyslexia 

exhibited a greater number of voxels with elevated lactate levels in the left anterior region 

of the brain compared to controls. No group differences were observed during the  

non-language task. Lactate metabolism was evaluated using the  

lactate-to-N-acetylaspartate (Lac/NAA) ratio. Another study investigated cerebellar 

metabolite concentrations in six adult males with dyslexia and six matched controls 

(Laycock et al., 2008). A decreased NAA/Cho ratio in the right cerebellar hemisphere was 

reported, along with an increased Cho/Cr ratio in the left hemisphere, suggesting 

hemispheric differences in cerebellar metabolism in dyslexia.  

Further research used ¹H-MRS to examine relationships between brain metabolite levels 

and reading abilities in 31 adults (17 females, 14 males) with varying reading proficiency 

(Bruno et al., 2013). A negative correlation was found between phonological decoding and 

the Cho/Cr ratio in the left angular gyrus, suggesting that higher choline levels in this region 

may be associated with less efficient phonological processing. Additionally, higher 

NAA/Cr levels and greater general cognitive ability were reported in males, although the 

results may reflect sampling bias due to the small sample size. A larger sample of 75 

children (47 boys, 28 girls) was assessed to investigate neurometabolite concentrations 

during the developmental period of reading acquisition (Pugh et al., 2014). Results 

indicated that higher Cho/Cr and Glu/Cr levels in the visual cortex were negatively 

correlated with reading ability and phonological processing. Additional evidence came 

from a study involving children aged 3.0 to 5.4 years (Lebel et al., 2016). Spectra from the 

anterior cingulate gyrus were analyzed in 56 participants (32 boys, 24 girls), revealing 

positive correlations between phonological processing and glutamate, creatine, and inositol 

concentrations. In the left angular gyrus (45 children: 29 boys, 16 girls), rapid automatized 

naming showed trend-level negative correlations with glutamine and choline. Children with 

lower levels of these metabolites tended to perform better on the naming task, indicating 

better language skills. In this study, metabolite concentrations were expressed in absolute 

units (mmol/kg), with water used as the reference. No significant sex differences were 

found in language task performance or metabolite levels. Another study investigated 
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GABA concentrations bilaterally in the inferior frontal gyrus in 28 adults (Nakai & 

Okanoya, 2016). No hemispheric differences in GABA+/Cr levels were found. However, 

a negative correlation between GABA+/Cr levels in the left inferior frontal gyrus and verbal 

fluency scores was reported. An additional investigation comes from an analysis of 70 

children (44 boys, 26 girls), with MRS data acquired from the midline occipital cortex  

(Del Tufo et al., 2018). Participants taking part in this study were a subset of the sample 

described in Pugh et al. (2014). Elevated glutamate and choline levels were associated with 

poorer reading performance, while lower GABA and higher N-acetylaspartate (NAA) 

concentrations were related to faster reaction times in a reading-related task. All metabolite 

levels were reported as ratios relative to creatine (Cr), which served as the internal 

reference. In the same year, another study reported a negative correlation between choline 

and myo-inositol concentrations and processing speed in girls with dyslexia, a pattern not 

observed in boys (Horowitz-Kraus et al., 2018). The sample included 24 children with 

dyslexia (8 girls) and 30 typical readers (17 girls). MRS data were acquired from the 

perigenual anterior cingulate cortex (ACC), a region associated with executive control and 

attention. A notable study explored neurometabolite concentrations in a Polish-speaking 

sample of 36 adults (18 with dyslexia, 18 controls) and 52 children (26 with dyslexia, 26 

controls) (Kossowski et al., 2019). MRS data were collected from the left temporo-parietal 

and occipital cortex. In both age groups, individuals with dyslexia showed lower total NAA 

(tNAA) concentrations in the occipital cortex, indicating potential reductions in neuronal 

integrity or density. The study also demonstrated age-related differences in metabolite 

levels: adults had higher choline and creatine in both regions, higher tNAA in the  

temporo-parietal cortex, and lower glutamate in the occipital cortex. Importantly, creatine, 

often used as a stable reference metabolite, was shown to vary with age. The most recent 

investigation explored neurometabolite concentrations in the anterior cingulate cortex in 21 

children with dyslexia (14 boys, 7 girls) and 31 typical readers (14 boys, 17 girls) (Cecil et 

al., 2021). Better word reading performance in the dyslexic group was associated with 

lower concentrations of Glx, Glu, Cr, and NAA. As in the study by Horowitz-Kraus, 

metabolite concentrations were reported in millimolar units and scaled to water, with 

corrections applied for tissue composition and relaxation times, except for Glu and Glx, 

which were not adjusted for metabolite-specific relaxation. 

In addition, phosphorus-31 magnetic resonance spectroscopy (³¹P MRS) was employed to 

investigate cerebral phospholipid metabolism in adults with dyslexia (Richardson et al., 
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1997). The study included 12 individuals with dyslexia (7 males, 5 females) and 10 controls 

(5 males, 5 females). Spectra were acquired from ten brain voxels per participant, though 

specific anatomical locations were not clearly reported. The dyslexic group showed  

a significantly elevated phosphomonoester (PME) peak, indicating potential abnormalities 

in membrane phospholipid metabolism. 

Overall, findings from MRS studies in dyslexia remain inconsistent, likely due to 

methodological variability and small, diverse samples. A lack of standardization in regions 

of interest and reference methods further limits cross-study comparability. 

1.2.4. Evidence related to the neural noise hypothesis 

The recently proposed neural noise hypothesis of dyslexia (Hancock et al., 2017) suggests 

that poor reading skills are associated with cortical hyperexcitability. According to this 

theory, individuals with dyslexia should exhibit elevated concentrations of the primary 

excitatory neurotransmitter, glutamate (Glu), and reduced levels of the main inhibitory 

neurotransmitter, gamma-aminobutyric acid (GABA). The resulting imbalance between 

excitatory and inhibitory signaling is believed to disrupt the temporal precision and 

synchronization of neuronal firing, leading to increased background neural “noise” that 

interferes with precise signal transmission. 

Empirical findings related to this hypothesis remain mixed. For example, one study 

reported that higher glutamate concentrations in the midline occipital cortex were 

negatively correlated with reading and phonological abilities (Pugh et al., 2014). The 

authors were also among the first to suggest that cortical hyperexcitability, together with 

disrupted white matter organization, may underlie dyslexia. A follow-up analysis on  

a largely overlapping sample (70 of the 75 participants) extended the findings by showing 

that elevated glutamate in the same occipital region was again linked to poorer reading 

performance, while lower GABA concentrations were associated with faster response times 

in a cross-modal matching task (Del Tufo et al., 2018). Additional support comes from 

research showing that reduced Glx and Glu concentrations were observed in children with 

dyslexia who performed better on a word reading task following a reading intervention 

targeting executive function (Cecil et al., 2021). 
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In contrast, other findings do not align with the predictions of the neural noise hypothesis. 

One investigation found that higher glutamate concentrations in the anterior cingulate 

cortex were actually associated with better phonological skills (Lebel et al., 2016). 

Similarly, increased GABA+/Cr levels in the left inferior frontal gyrus were related to 

poorer verbal fluency (Nakai & Okanoya, 2016), a common challenge for individuals with 

dyslexia. 

There are also studies that found no evidence for a relationship between Glu or GABA 

concentrations and reading skills. For instance, an investigation focused on the anterior 

cingulate cortex reported no significant correlations between metabolite levels and either 

reading ability or cognitive task performance (Horowitz-Kraus et al., 2018). Another study 

that examined the left temporo-parietal and occipital cortices found no group differences 

in Glu, Glx, or GABA levels between dyslexic and typically developing individuals 

(Kossowski et al., 2019). 
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1.3.  Summary 

Among the many cognitive domains that could be investigated with functional magnetic 

resonance spectroscopy (fMRS), reading offers a particularly compelling target. Reading 

engages a well-characterized left-hemispheric network of brain regions—including the 

visual word form area (VWFA), superior temporal sulcus (STS), and inferior frontal gyrus 

(IFG)—that provide robust regions of interest for probing task-related neurochemical 

changes.  

To date, however, no studies have applied fMRS to the reading process, despite the 

potential of this approach to reveal dynamic glutamate responses that may underlie both 

typical reading and its impairments. Prior work has shown that salient stimuli are required 

to evoke reliable glutamate responses (Ip et al., 2019), with detection enhanced at  

ultra-high-field (7T) relative to conventional 3T scanners (Terpstra et al., 2016). Visual 

word forms, in particular, constitute highly salient stimuli that capture attention from early 

childhood (Zhao et al., 2018) and consistently activate the reading network (Dehaene & 

Cohen, 2011). This makes them ideally suited for testing whether fMRS can detect  

task-modulated neurochemical changes during reading.  

Importantly, it remains unknown whether such modulation relates to individual differences 

in reading skill, or whether fMRS can distinguish between typical and dyslexic readers. 

While resting-state MRS studies of dyslexia have produced mixed evidence for elevated 

glutamate levels (e.g., Pugh et al., 2014; Kossowski et al., 2019), it is plausible that 

neuronal hyperexcitability, if present, might be more detectable during reading-related 

stimulation and confined to regions of the reading network rather than more general cortical 

areas.   
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2. Original Study 

2.1.  Aims and hypotheses 

In this thesis, I address five research aims that explore the use of fMRS to study glutamate 

concentration changes during reading in typical and dyslexic readers, while also assessing 

the regional specificity, temporal dynamics, and data quality across ultra-high-field and 

conventional scanners. 

The first goal was to examine whether glutamate concentration changes in response 

to reading-related visual stimuli within language-sensitive brain regions, specifically 

the superior temporal sulcus (STS) and the visual word form area (VWFA). To the 

best of my knowledge no previous single-voxel fMRS study has used reading-related 

stimuli with voxels placed in individually defined regions directly involved in reading. It 

was expected that words would evoke a stronger glutamate response than false font strings, 

particularly in the VWFA (Dehaene & Cohen, 2011), and that post-stimulation glutamate 

levels would be higher than during rest. 

The second aim was to test the neural noise hypothesis, which predicts that individuals 

with dyslexia exhibit higher glutamate levels in the STS compared to typical readers 

(Hancock et al.). In this case, a significant between-group difference in glutamate 

concentration was expected in this region, with the dyslexic group showing elevated levels, 

especially during reading word forms. 

The third aim was to determine whether the effects described above are specific to 

brain regions associated with reading (VWFA and STS) or whether they can also be 

observed in the medial prefrontal cortex (mPFC), which is not directly involved in 

reading (Richlan et al., 2009). This comparison would allow assessment of the regional 

specificity of the observed effects. 

A further aim was to investigate the temporal dynamics of glutamate concentration 

changes following stimulation. Despite increasing interest in fMRS, the exact shape of 

the glutamate response function remains unknown. The theoretical function proposed by 

Mullins (2018) presents three potential patterns. However, they still need to be empirically 

confirmed. In the present study, glutamate concentration was measured at four time points 
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after stimulus onset: 500 ms, 1000 ms, 3000 ms, and 4500 ms. The first two time points 

were hypothesized to capture the peak and sustained elevation of glutamate, while the latter 

two were expected to reflect its return to baseline levels. 

Finally, the study aimed to compare data quality obtained on two different magnetic 

resonance systems: a 7 Tesla DISCOVERY 950 MR System (GE, Ultra-High Field 

Magnetic Resonance Lab, ECO-TECH Complex, Lublin, Poland) and a 3 Tesla Trio system 

(Siemens, Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, 

Warsaw, Poland). Ultra-high-field scanners are expected to provide higher signal-to-noise 

ratio and better spectral resolution, enabling more accurate metabolite quantification. 

However, they also pose challenges, such as magnetic field inhomogeneity and potential 

signal loss due to shorter T2 and longer T1 relaxation times (Pradhan et al., 2015). Assessing 

whether the technical advantages outweigh the practical limitations was therefore  

an important part of this work. 

To address these aims, three experiments were conducted. The first experiment used 7T 

data to measure glutamate responses to words, false font strings, and rest, and additionally 

glutamate concentration changes across the four defined time points. The second 

experiment followed the same design at 3T. The third experiment compared data quality 

between the two scanners. Given previous reports of potential sex differences in both the 

neural basis of dyslexia and the glutamate system, participants’ sex was included as  

a variable of interest in the first two experiments (Giacometti & Barker, 2020). 
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2.2. Methods 

2.2.1. Participants 

Participants invited to take part in the functional magnetic resonance spectroscopy study 

were selected from a larger project focused on the neural noise hypothesis in individuals 

with dyslexia (OPUS grant, National Science Centre, awarded to professor Katarzyna 

Jednoróg (2019/35/B/HS6/01763)). Participants were assigned to the dyslexic group based 

on a clinical diagnosis of dyslexia established during childhood. All participants were  

right-handed, born at term, had normal or corrected-to-normal vision, no hearing 

impairments, no history of neurological or psychiatric disorders, and an IQ higher than 80. 

IQ was assessed using the Polish version of the Abbreviated Battery of the Stanford-Binet 

Intelligence Scale-Fifth Edition (SB5; Roid et al., 2017). 

The study was approved by the ethics committee at the University of Warsaw, Poland 

(reference number 2N/02/2021). Written informed consent was obtained from all 

participants or their legal guardians, and participants received financial compensation for 

their time: 200 PLN for behavioral and fMRI session, 600 PLN for fMRS on the 7T scanner, 

and 200 PLN for fMRS on the 3T scanner. 

Fifty-nine volunteers participated in the fMRS experiment conducted on the 7T scanner. 

This group included 30 typical readers (14 females, 16 males) aged between 15.38 and 

25.71 years (M = 20.89, SD = 3.16) and 29 individuals diagnosed with dyslexia (13 

females, 16 males) aged between 15.22 and 25.66 years (M = 20.27, SD = 3.72). Forty 

volunteers participated in the fMRS experiment conducted on the 3T scanner. This group 

included 19 typical readers (11 females, 8 males) aged between 15.64 and 25.19 years  

(M = 21.87, SD = 2.93) and 21 individuals diagnosed with dyslexia (9 females, 12 males) 

aged between 15.40 and 25.03 years (M = 21.50, SD = 3.40). A total of 37 participants 

were scanned using both the 3T and 7T scanners. Of these, 22 participants underwent the 

3T scanner session first. Among the participants, 18 individuals (11 female and 7 male) 

were from the control group, while 19 participants (8 female and 11 male) were diagnosed 

with dyslexia. In the control group, participants scanned on the 7T scanner were aged 

between 15.38 and 25.71 years (M = 21.89, SD = 3.16), and on the 3T scanner between 

15.64 and 25.19 years (M = 21.79, SD = 2.99). In the dyslexic group, participants scanned 
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on the 7T scanner were aged between 15.22 and 25.66 years (M = 21.52, SD = 3.52), and 

on the 3T scanner between 15.40 and 25.03 years (M = 21.19, SD = 3.42).  

2.2.2. Procedure 

All participants took part in an initial behavioral and fMRI session and in at least one fMRS 

session. During the behavioral session participants completed a battery of paper-pencil 

reading and reading-related tests to assess their reading skills. This phase lasted 

approximately one hour. Subsequently, participants underwent the fMRI experiment to 

accurately determine the coordinates of the reading-sensitive regions for fMRS voxel 

placement. They were first instructed on the tasks to be performed in the scanner. The fMRI 

session included a T1-weighted anatomical scan, followed by three runs of the fMRI 

experiment. The entire fMRI procedure lasted about 40 minutes, and the total session 

duration was approximately two hours. 

On a separate day the participant took part in the fMRS experiment. The session began with 

task instructions for the fMRS procedure. Participants first underwent a T1-weighted 

anatomical scan, which was then co-registered with the anatomical scan from the fMRI 

session. To ensure optimal field homogeneity within the selected voxel, an initial shimming 

measurement was performed, followed by shimming calibration. The fMRS experiment 

was initiated when the voxel linewidth was below 20 Hz. The total duration of the fMRS 

session was approximately two hours, depending on the number of fMRS runs successfully 

completed (based on shimming results). Brain regions were scanned in a pseudo-random 

order. On the 7T scanner, an additional anatomical scan was acquired for the brain 

volumetry.  

2.2.3. Reading tests 

Participants’ reading skills were assessed using a variety of paper-and-pencil tasks (see 

Glica et al., 2024 for details). Reading skills were measured by counting the number of 

words and pseudowords participants could read correctly within one minute (Szczerbiński 

& Pelc-Pękała, 2013). Reading comprehension was assessed with 26 short sentences  

(e.g., “Lemons are yellow,” “A year has seven months”) that participants read silently. 

They indicated whether the sentence was true or false, and the time to complete the task 

served as the outcome measure.  
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Additionally, lexical access was determined using Rapid Automatized Naming (RAN) 

including subtests for naming objects, colors, digits, and letters (Fecenec et al., 2013). 

Phonological awareness was evaluated using two tasks: a phoneme deletion task 

(Szczerbiński & Pelc-Pękała, 2013), where participants had to repeat a word after removing 

a specific phoneme (e.g., “farm” without “f”), and a spoonerisms task (Bogdanowicz et al., 

2016), where participants had to switch phonemes or syllables between two words. 

Orthographic awareness was measured using 28 pairs of pseudowords, where one was 

written according to Polish spelling rules, and the other was not. Participants identified the 

correctly written pseudoword. Accuracy divided by time served as the outcome measure 

(Awramiuk & Krasowicz-Kupis, 2014). 

2.2.4. fMRI Experiment 

fMRI Task  

The aim of the fMRI experiment was to localize the language-sensitive left superior 

temporal sulcus (STS) and the visual word form area (VWFA) in individual participants. 

The fMRI task consisted of three runs, each lasting 5 minutes and 9 seconds. Two runs 

involved the presentation of visual stimuli, and one involved auditory stimuli. Visual 

stimuli included three categories: words, consonant strings, and false font strings (BACS 

font; Vidal et al., 2017). All visual stimuli consisted of 3-4 letter/symbol strings. Auditory 

stimuli included three categories: words, consonant strings, and backward speech. They 

were generated using a speech synthesizer (text-to-speech generator) to minimize 

variability in emphasis. 

Stimuli were presented for 800 ms with a 400 ms break in between, forming blocks of 14 

stimuli (each block lasting 16.8 seconds). Each run contained 12 stimulation blocks (4 for 

each category), with a fixation cross displayed for 8 seconds between blocks. Participants 

performed a 1-back task, where they needed to press a button whenever they saw a stimulus 

that was the same as the one they had just seen, in order to maintain focus throughout all 

runs. Each block included 2 to 3 repeated stimuli serving as targets. 

The stimuli were presented using Presentation software (Version 20.1, Neurobehavioral 

Systems, Inc., Berkeley, CA, www.neurobs.com) running on a PC. Visual stimuli were 

displayed on a screen positioned behind the MR scanner and viewed via a mirror mounted 

http://www.neurobs.com/
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above the participants’ eyes. Auditory stimuli were delivered through MR-compatible 

headphones. 

fMRI Data Acquisition 

fMRI data were acquired using a Siemens 3T Trio system with a 32-channel radiofrequency 

head coil (two participants were scanned using a 12-channel coil due to technical issues) at 

Laboratory of Brain Imagining, Nencki Institute of Experimental Biology. 

Anatomical data was acquired using a whole-brain 3D T1-weighted image (MPRAGE 

sequence): inversion time (TI): 1100 ms; GRAPPA parallel imaging with an acceleration 

factor: PE = 2; voxel resolution: 1 × 1 × 1 mm³; dimensions: 256 × 256 × 176; acquisition 

time (TA): 6 minutes 3 seconds. 

Functional data was acquired with a whole-brain echo planar imaging (EPI) sequence: echo 

time (TE): 30 ms; repetition time (TR): 1410 ms; flip angle (FA): 90°; field of view (FOV): 

212 mm; matrix size: 92 × 92; multiband acceleration factor: 3; slice thickness: 2.3 mm (60 

axial slices); in-plane resolution: 2.3 × 2.3 mm2. 

fMRI data analysis  

The data were processed using Statistical Parametric Mapping (SPM12) (Wellcome Trust 

Centre for Neuroimaging, London, UK) implemented in MATLAB R2020b (The 

MathWorks Inc., Natick, MA, USA). The preprocessing steps included realignment, 

coregistration and smoothing. First, all functional images were realigned to the participant’s 

mean image. Then, T1-weighted anatomical images were coregistered to the functional 

images for each subject. Finally, the fMRI data were smoothed using a 6 mm isotropic 

Gaussian kernel. 

The left superior temporal sulcus (STS) was localized in the native space for each 

participant as a cluster located in the middle posterior part of the left superior temporal 

sulcus. This cluster showed significantly higher activation for visual words compared to 

false font strings and for auditory words compared to backward words (logical AND 

conjunction), using a threshold of p < 0.01 uncorrected. For six participants (DYS: n = 2, 

CON: n = 4), the threshold was adjusted to p < 0.05 uncorrected, and for another six 

participants (DYS: n = 3, CON: n = 3), the auditory contrast was modified to auditory 



 43 

words versus fixation cross due to the absence of significant activation for the original 

contrasts. 

The visual word form area (VWFA) was localized in the native space for each participant 

as a cluster within the occipitotemporal sulcus. This cluster exhibited greater activation for 

words compared to false font strings, as well as for words compared to fixation cross 

(logical AND conjunction), using a threshold of p < 0.01 uncorrected. 

2.2.5. fMRS Experiment 

Regions of Interest 

The goal of the fMRS study was to measure glutamate concentration changes in brain 

regions belonging to the reading network. Two key regions associated with reading, the left 

superior temporal sulcus (STS) and the visual word form area (VWFA), were localized 

individually for each participant. Additionally, a voxel in a control region, the medial 

prefrontal cortex (mPFC), not directly involved in reading, was placed based on anatomical 

localization (Figure 5). 

 

Figure 5. Example of voxel positioning for: a) left superior temporal sulcus (STS), b) visual word form area 

(VWFA), c) medial prefrontal cortex (mPFC, control region). 
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fMRS task 

During the fMRS task, in contrast to the fMRI localizer, only visual stimuli were used. 

Each trial consisted of either three Polish words or three false font strings (written in BACS 

font) presented consecutively. Trials lasted 850 ms, with each word or false font string 

(consisting of 3–4 letters or symbols) presented for 250 ms, separated by a 50 ms gap (see 

Figure 6). Each stimulation block consisted of 12 trials (16 MRS averages were acquired), 

presented in a pseudo-random order (6 trials with words and 6 with false font strings). Each 

run consisted of 13 stimulation blocks (each lasting 64 seconds) and 13 rest periods (lasting 

32–36 seconds, except for the final rest period, which lasted 60 seconds). Additionally, the 

stimuli were specifically ordered to prevent the repetition of signals of the same type (visual 

stimulation, delay) within the same cycle of 16-step phase cycling. 

 

 

Figure 6. Examples of visual stimuli: false font string (BACS) and words in Polish. Visual stimuli containing 

letters or symbols with descending features were designated as targets. 

To ensure that participants stayed focused, they were instructed to press a button on  

a response pad whenever they saw a word or false font string containing a descending 

feature. In each run, 468 stimuli were presented in 156 trials (78 trials with words and 78 

trials with false font strings) in a pseudo-random order, with a total of 104 target stimuli. 

The total duration of each run was 21 minutes and 20 seconds per region of interest. 

Similar to the fMRI task, the stimuli were presented using Presentation software (Version 

20.1, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com) running on a PC. 

Visual stimuli were displayed on a screen positioned behind the MR scanner and viewed 

via a mirror mounted above the participants’ eyes. 

http://www.neurobs.com/
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Glutamate dynamics 

The fMRS task was designed to measure changes in glutamate concentration over time (see 

Figure 7). Since the glutamate response function is still a matter of debate, MRS signals 

were acquired at four time points relative to trial onset: 500 ms, 1000 ms, 3000 ms, and 

4500 ms. These delays were chosen because the visual stimuli in this project were complex 

and were aligned with the repetition time (TR = 4 s) of the experiment. 

 

Figure 7. Design of delays between visual stimulation and MRS signal acquisition. MRS signals were 

acquired with a repetition time (TR) of 4 seconds. 

During each stimulation block, 16 MRS averages were collected, two of each type (words 

with 500 ms delay, words with 1000 ms delay, words with 3000 ms delay, words with 4500 

ms delay, false font strings with 500 ms delay, false font strings with 1000 ms delay, false 

font strings with 3000 ms delay, false font strings with 4500 ms delay). MRS acquisitions 

at 500 ms and 4500 ms were always collected consecutively, with a repetition time (TR) of 

4 seconds.  

fMRS Data Acquisition 

Scanners 

Data were acquired using two scanners: a 7T GE DISCOVERY 950 system with  

a 32-channel radiofrequency head coil located at the Ultra-High Field Magnetic Resonance 

Lab, Ecotech-Complex, Maria Curie-Skłodowska University in Lublin and a 3T Siemens 

Trio system with a 32-channel radiofrequency head coil, previously used for the fMRI 

study. Data from the 7T scanner were saved in pfile format, while data from the 3T scanner 

were saved in twix format. Both file types preserved all dimensions (coil channels, 

individual MRS signals) uncombined, which is critical for functional spectroscopy. 
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Anatomical Scans 

Structural data on the 7T scanner were acquired as a whole-brain 3D T1-weighted image 

with the following parameters: sequence: 3D-SPGR BRAVO; inversion time (TI): 450 ms; 

echo time (TE): 2.6 ms; repetition time (TR): 6.6 ms; flip angle: 12°; bandwidth:  

±32.5 kHz; ARC acceleration factor: PE = 2; voxel resolution: 1 × 1 × 1 mm³; dimensions: 

256 × 256 × 180. 

A T1-weighted anatomical scan on the 3T scanner was acquired using the same parameters 

as in the fMRI study. 

Coregistration of Structural Images 

Structural images from the fMRI and fMRS sessions were co-registered using the Statistical 

Parametric Mapping toolbox (SPM12) (Welcome Trust Center for Neuroimaging, London, 

UK). This coregistration allowed for accurate positioning of the fMRS voxel based on 

coordinates from the fMRI localizer for each individual. Voxels were adjusted to ensure 

they included only brain tissue.  

Shimming 

Ensuring magnetic field homogeneity within the voxel was a critical step before starting 

the fMRS experiment. The linewidth of the spectra needed to be less than 20 Hz, which 

was achieved through a shimming procedure (Landheer & Juchem, 2021). On the 7T 

scanner, the Famasito 1st and 2nd order shimming algorithm was employed whenever 

possible; however, the procedure often led to unrealistic settings. Zero- and first-order 

shims were used when Famasito failed to converge. On the 3T scanner, the 1st and 2nd order 

FASTMAP algorithm was used to optimize the magnetic field homogeneity. 

fMRS Data Acquisition 

Functional magnetic resonance spectroscopy was acquired using single-voxel spectroscopy 

method with a semi-LASER sequence (Deelchand et al., 2021); voxel size: 15 × 15 × 15 

mm3; echo time (TE): 28 ms; repetition time (TR): 4000 ms; data points: 4096; averages: 

320; water suppression: VAPOR; reference scans (averages with unsuppressed water 

without task performance): eight for 7 Tesla, sixteen for 3 Tesla scanners; phase cycling: 

16 steps. 
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2.2.6. fMRS Data Analysis 

Basis Set 

A basis set is a collection of metabolite response functions required to decompose 

functional magnetic resonance spectroscopy (fMRS) data into individual components, 

representing specific metabolite signals. The response functions depend on scanning 

parameters such as field strength and acquisition sequence. This is a crucial step for 

quantifying metabolite concentrations from the acquired spectra. 

The higher frequency resolution at 7T allows for the detection of a larger number of 

metabolites. However, it remains uncertain whether including metabolites with 

theoretically low concentrations improves data analysis. To address this, different 

metabolite sets were chosen for the 3T and 7T scanners to reduce the risk of misidentifying 

low-concentration metabolites as glutamate. 

For both 3T and 7T scanners, basis-sets were selected to match the main frequency, 

sequence and echo time used on the scanners.  

For the 7T scanner, the basis set included 27 metabolite spectra simulated using FID-A 

(Simpson et al., 2017) with a script customized for our experiment (Figure 8).  

The following metabolites were included: Ala, Asc, Asp, Cit, Cr, EtOH, GABA, GPC, 

GSH, Glc, Gln, Glu, Gly, Ins, Lac, NAA, NAAG, PCh, PCr, PE, Phenyl, Scyllo, Ser, Tau, 

Tyros, bHB, and bHG. Additionally, synthetic model-based macromolecule spectra 

provided by FSL-MRS were added.  
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Figure 8. Visualization of the basis set for the 7T scanner without macromolecules added. Visualization 

generated using the mrs_tools vis function.  

The basis set for the 3T scanner included 18 metabolite spectra, supplemented with 

macromolecule spectra using FSL-MRS. The included metabolites were: Ala, Asc, Asp, 

Cr, GABA, GSH, Glc, Gln, Glu, Ins, Lac, NAA, NAAG, Pcho, PCr, PE, Tau, and sins (see 

Figure 9). This basis set was not designed specifically for this study and it was publicly 

available on FSL-MRS page 

(https://github.com/wtclarke/fsl_mrs/tree/master/fsl_mrs/mmbasis/oldBasisSets). The 

single broad macromolecule component (Mac) originally present in the basis set was 

replaced by model-based macromolecular components added using FSL-MRS, in order to 

match the macromolecular modeling approach used for the 7T data and to facilitate 

comparison between the two scanners. 

https://github.com/wtclarke/fsl_mrs/tree/master/fsl_mrs/mmbasis/oldBasisSets
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Figure 9. Visualization of the basis set for the 3T scanner without macromolecules added, before removing 

Mac. Visualization generated using the mrs_tools vis function. 

Quality Check 

Initially, fMRS data were analyzed as conventional magnetic resonance spectroscopy data. 

All 320 signals acquired during a run were averaged to create a single spectrum. This 

approach was employed to assess the overall quality of the fMRS data. 

Data were analyzed using FSL-MRS (version 2.0.7; Clarke et al., 2021). Raw data stored 

in pfile and twix formats were converted to NifTI-MRS format using the spec2nii 

conversion tool available in the FSL-MRS package 

(https://onlinelibrary.wiley.com/doi/10.1002/mrm.29418, GitHub link). 

Basic preprocessing steps were performed automatically using the fsl_mrs_preproc 

function, including: coil combination, frequency and phase alignment, removal of bad 

averages, averaging all 320 signals into a single spectrum, eddy current correction, 

frequency shifting to the reference peak, phase correction. 

Subsequently, the preprocessed data were quantified using the appropriate basis set, with 

macromolecules treated as a separate group. The analysis employed unsuppressed water 

signals for eddy current correction. Averaged signals from creatine and phosphocreatine 

https://onlinelibrary.wiley.com/doi/10.1002/mrm.29418
https://github.com/wtclarke/spec2nii
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served as internal references for metabolite concentration. Quantification was performed 

within the 0.2–4.2 ppm range (see Figure 10).  
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Figure 10. Example of a high-quality single-subject spectrum acquired from the STS a) on a 7T scanner  

b) on a 3T scanner. The black spectrum represents the original data averaged from 320 signals. The red line 
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shows the fitted spectrum based on the basis set. Residuals (differences between the original data and the 

fitted spectrum) are displayed at the top of the figure. 

The quality assessment included both quantitative analysis and visual inspection. Spectra 

with a linewidth higher than thresholds or with poor model fit were excluded from further 

analysis. The linewidth of metabolite peaks was assessed for both scanners, with different 

thresholds for each: 20 Hz for 7T and 8.57 Hz for 3T scanner respectively. The difference 

in linewidth thresholds arises because linewidth expressed in Hz is strongly linked to the 

Larmor frequency (𝑓𝐿𝑎𝑟𝑚𝑜𝑟) and the full width at half maximum (FWHM), which can be 

expressed in both Hz and ppm. To maintain a consistent FWHM in ppm across scanners, 

the52hresholdds in Hz must differ.  

The relationship between FWHM in ppm and Hz is described by the following formula: 

𝑓𝐿𝑎𝑟𝑚𝑜𝑟 =   𝐵0 

𝐹𝑊𝐻𝑀[𝑝𝑝𝑚] =  
𝐹𝑊𝐻𝑀[𝐻𝑧]

𝑓𝐿𝑎𝑟𝑚𝑜𝑟
 

where: 

γ – gyromagnetic constant for protons (42.58 𝑀𝐻𝑧 𝑇⁄ ), 

𝐵0 – magnetic field induction 

For the 3T scanner (𝑓𝐿𝑎𝑟𝑚𝑜𝑟 = 127.7 𝑀𝐻𝑧) and the 7T scanner (𝑓𝐿𝑎𝑟𝑚𝑜𝑟 = 298.0 𝑀𝐻𝑧), 

the thresholds were calculated as follows: 

𝐹𝑊𝐻𝑀7𝑇[𝐻𝑧] =  20 𝐻𝑧 

𝐹𝑊𝐻𝑀7𝑇[𝐻𝑧]

𝑓𝐿𝑎𝑟𝑚𝑜𝑟,7𝑇
=  

𝐹𝑊𝐻𝑀3𝑇[𝐻𝑧]

𝑓𝐿𝑎𝑟𝑚𝑜𝑟,3𝑇 
 

𝐹𝑊𝐻𝑀3𝑇[𝐻𝑧] =  
𝐹𝑊𝐻𝑀7𝑇[𝐻𝑧] ⋅  𝑓𝐿𝑎𝑟𝑚𝑜𝑟,3𝑇

𝑓𝐿𝑎𝑟𝑚𝑜𝑟,7𝑇
 

𝐹𝑊𝐻𝑀3𝑇[𝐻𝑧] =  
20 𝐻𝑧 ⋅  127.7 𝑀𝐻𝑧

298.0 𝑀𝐻𝑧
=  8.57 𝐻𝑧 

This calculation ensures that the FWHM in ppm remains consistent across scanners. 
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After quality assessment, some spectra were excluded from the analysis (see Figure 11).  

On the 7T scanner, 55 out of 57 medial prefrontal cortex scans were included in the 

analysis. Among them, 29 were from the control group (14 females, 15 males) and 26 from 

the dyslexic group (13 females, 13 males). In the left superior temporal sulcus region,  

49 out of 54 spectra were usable. This group included 28 control participants (12 females, 

16 males) and 21 dyslexic participants (12 females, 9 males). For the visual word form 

area, only 12 out of 42 data sets were suitable for analysis. This included 7 control 

participants (3 females, 4 males) and 5 dyslexic participants (3 females, 2 males). 

On the 3T scanner, 38 out of 40 medial prefrontal cortex scans achieved good quality data. 

Of these, 18 were from the control group (11 females, 7 males) and 20 from the dyslexic 

group (9 females, 11 males). In the left superior temporal sulcus, 35 out of 39 spectra were 

included in the analysis. This group consisted of 17 control participants (10 females,  

7 males) and 18 dyslexic participants (11 females, 7 males). For the visual word form area, 

9 out of 21 spectra were acceptable. Of these, 5 were from the control group (2 females,  

3 males) and 4 from the dyslexic group (1 female, 3 males). 

For 34 participants scanned using both 7T and 3T scanners, medial prefrontal cortex scans 

provided data suitable for analysis. This included 18 control participants (11 females,  

7 males) and 16 dyslexic participants (8 females, 8 males). 30 spectra from the left superior 

temporal sulcus were good quality, with 17 from the control group (10 females, 7 males) 

and 13 from the dyslexic group (6 females, 7 males). Due to the low quality of the visual 

word form area data (with only a few datasets meeting the quality criteria), this region was 

omitted from further analysis. 
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Figure 11. Example of a low-quality single-subject spectrum acquired from the STS, omitted from the 

analysis, a) on a 7T scanner b) on a 3T scanner. The black spectrum represents the original data averaged 

from 320 signals. The red line shows the fitted spectrum based on the basis set. Residuals (differences 

between the original data and the fitted spectrum) are displayed at the top of the figure. 
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fMRS Preprocessing 

After the quality assessment, the data were analyzed using functional magnetic resonance 

spectroscopy. All preprocessing steps were performed using FSL-MRS (version 2.0.7; 

Clarke et al., 2021). The data had been previously converted to NifTI-MRS format during 

the MRS analysis. Data from each region of interest (ROI) was preprocessed separately 

using the fsl_mrs_preproc function. This function performed the following preprocessing 

steps: coil combination, frequency and phase alignment, phase correction based on the total 

creatine (creatine and phosphocreatine) peak, eddy current correction. 

All signals (320 signals in total) were preprocessed together before being divided into data 

packages to avoid potential glutamate changes that could arise from differences in the 

preprocessing steps, rather than from the actual glutamate response to the visual 

stimulation. 

Importantly, no MRS scans were averaged at this stage (the fmrs=True option was used in 

the fsl_mrs_preproc function). Additionally, the “unlike” option, which automatically 

removes bad averages, was deactivated. This choice allowed for greater control over which 

signals were excluded from the dataset. 

Voxel Segmentation 

To determine the voxel composition – specifically, the percentage of white matter (WM), 

gray matter (GM), and cerebrospinal fluid (CSF), the svs_segmentation tool was used, with 

the results of fsl_anat as input. Voxel segmentation was performed on structural images 

acquired from the 3T scanner for both datasets (3T and 7T). Anatomical images from the 

3T scans were coregistered to the corresponding 7T images using SPM12 (Wellcome Trust 

Centre for Neuroimaging, London, UK). This approach was chosen because T1-weighted 

images from the 3T scanner had fewer artifacts and less intensity bias in the temporal lobe 

compared to 7T anatomical images. These differences are due to the higher magnetic field 

inhomogeneity associated with the 7T scanner. 
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fMRS Data Analysis – Conventional Averaged Approach 

The data were analyzed by dividing signals into groups based on the type of stimulation. 

This approach improved the signal-to-noise ratio (SNR). The number of MRS signals in 

each group was equalized to minimize errors caused by differences in data quality. More 

averaged MRS signals led to better spectra quality, which could influence fitting and, 

consequently, metabolite concentration results. 

Grouping by Stimulation Type 

Initially, MRS signals were divided into three groups: words in Polish (78 MRS 

acquisitions), false font strings (78 MRS acquisitions), rest (78 MRS acquisitions). For both 

visual stimulations, MRS signals acquired with time delays of 500 ms, 1000 ms, and  

3000 ms were analyzed together as one group (see Figure 12).  
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Figure 12. Example of a single-subject spectrum acquired from the STS a) on a 7T scanner b) on a 3T scanner. 

The black spectrum represents the original data averaged from 78 signals acquired after words stimulation. 

The red line shows the fitted spectrum based on the basis set. Residuals (differences between the original data 

and the fitted spectrum) are displayed at the top of the figure. 
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Grouping by Delay 

To investigate differences between delays, the data were further divided into 8 groups: 

words with 500 ms delays (26 MRS acquisitions), words with 1000 ms delays (26 MRS 

acquisitions), words with 3000 ms delays (26 MRS acquisitions), words with 4500 ms 

delays (26 MRS acquisitions), false font strings with 500 ms delays (26 MRS acquisitions), 

false font strings with 1000 ms delays (26 MRS acquisitions), false font strings with  

3000 ms delays (26 MRS acquisitions), false font strings with 4500 ms delays (26 MRS 

acquisitions) (see Figure 13). 
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Figure 13. Example of a single-subject spectrum acquired from the STS a) on a 7T scanner b) on a 3T scanner. 

The black spectrum represents the original data averaged from 26 signals acquired after words stimulation 

with 500 ms delay. The red line shows the fitted spectrum based on the basis set. Residuals (differences 

between the original data and the fitted spectrum) are displayed at the top of the figure. 
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Detection of Unlike Signals 

After fMRS preprocessing, unlike signals were identified using the identifyUnlikeFIDs 

function (GitHub repository) with a standard deviation limit of 1.96 (default setting). The 

output was a list of indexes corresponding to signals potentially affected by movement or 

other artifacts. 

Before data averaging, signals identified as unlike were excluded. Subsequently, the 

number of MRS signals in each group was evaluated. Data sets in which more than 20% of 

signals were excluded in any group were generally removed from further analysis. 

However, one data set acquired from the STS region on the 7T scanner had 6 unlike signals 

out of 26 in a single group (23%). While this exceeds the standard exclusion threshold, the 

participant was included in the analysis because the remaining groups within the data set 

met the quality criteria, and excluding this participant would result in an unnecessary data 

loss. 

Ultimately, no data set was excluded from the analysis due to an excessive number of 

signals identified as unlike. 

Fitting 

MRS signals from functional magnetic resonance spectroscopy divided into groups were 

fitted using FSL-MRS (version 2.1.20) with default settings. MRS signals accumulated in 

groups were averaged after excluding unlike signals. Metabolites were treated as separate 

components, with each fitted individually using its corresponding basis set, while all 

macromolecules were treated together as a single group. The unsuppressed water signals, 

averaged across all acquisitions, were used as a reference for quantification. The same 

reference file was applied to all groups. 

fMRS Data Analysis – Mixed Dynamic-Averaged Approach 

Especially for this project, an innovative approach was proposed that combines the 

advantages of the traditional fMRS data analysis method, which relies on averaged MRS 

signals acquired with the same type of stimulation, with the dynamic approach increasingly 

used in fMRS data analysis. This is the first time this idea has been applied. 

https://github.com/wtclarke/fsl_mrs/blob/master/fsl_mrs/utils/preproc/unlike.py
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In the dynamic model, multiple spectra can be provided and linked using an arbitrary 

model. A reduced set of model parameters, such as the concentration of one or more 

metabolites, linewidth, etc., can vary, while other parameters remain fixed within the 

common model. 

The dynamic method is based on a general linear model (GLM), where a design matrix is 

used to predict and describe factors influencing individual fMRS signals, such as specific 

stimulations, BOLD effects, and other predictable variables. The advantage of combining 

averaged groups with GLM fitting lies in two main benefits: the significantly higher  

signal-to-noise ratio (SNR) of the averaged groups and the substantial simplification of the 

design matrix, which would otherwise be highly complex for this project’s paradigm. 

While the dynamic approach allows for the simultaneous analysis of all groups within  

a single fitting procedure, it also enables researchers to define which metabolite 

concentrations are expected to differ in response to stimuli (calculated separately for each 

group) and which remain constant across the entire experiment. This flexibility reduces the 

risk of misinterpreting spectral overlaps from other metabolites as actual concentration 

changes during the experiment. By fixing the concentrations of metabolites whose spectral 

overlap may interfere with the target metabolite (e.g., glutamate) and whose changes in 

response to stimulation are not expected, the dynamic approach minimizes fitting errors 

and provides a clearer picture of the metabolite of interest. 

Additionally, performing a single fitting procedure for all groups prevents potential 

inconsistencies in metabolite concentrations that could arise from separate quantification 

in FSL-MRS, where initial conditions for the analysis may differ between groups. These 

variations in starting parameters, such as linewidth, frequency shifts, or baseline 

characteristics, can lead to differences in metabolite quantification and make comparisons 

between groups less reliable. By fitting all groups simultaneously, the dynamic approach 

ensures that the same reference conditions are used, reducing systematic biases and 

improving the robustness of the analysis. 
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Dynamic Fitting of averaged groups 

At the beginning of the analysis, data averaged into groups (based on the type of visual 

stimulation and the time delays between stimulation and MRS acquisition, already prepared 

for averaged approach analysis) were merged into a NifTI-MRS file containing eight 

averaged signals. The signals were ordered as follows: averaged group of words with  

a 500 ms delay, averaged group of words with a 1000 ms delay, averaged group of words 

with a 3000 ms delay, averaged group of words with a 4500 ms delay, averaged group of 

false font strings (BACS) with a 500 ms delay, averaged group of false font strings (BACS) 

with a 1000 ms delay, averaged group of false font strings (BACS) with a 3000 ms delay, 

averaged group of false font strings (BACS) with a 4500 ms delay. This merged file is 

treated as spectrum with eight MRS signals. Dynamic fitting was performed using  

FSL-MRS (version 2.1.20), with macromolecules treated as a separate group. Other 

parameters were set to default. 

Design matrix 

Despite the fact that none of the metabolites were fitted dynamically, the software required 

the use of the design matrix to run the fitting. The design matrix loaded contained nine 

columns. The first eight columns corresponded to the eight groups, with each column 

containing ones for the respective group and zeros for others. The ninth column was the 

intercept, consisting entirely of ones.  

Configuration file 

The configuration file is a Python module (py file) where researchers define expectations 

how metabolites and other parameters vary during the run. This file specifies whether  

a parameter: remains constant throughout the experiment (Fixed), changes dynamically 

across groups based on a General Linear Model (GLM), where values are calculated for 

each column in the design matrix to determine how much they contribute to the signal 

(Dynamic) or varies for each individual signal (Variable). The configuration file also allows 

for setting constraints on parameter ranges (e.g., positive values for concentrations), and 

implementing custom dynamic models tailored to specific hypotheses. 

In this study, glutamate was set as variable to allow its concentration to vary across eight 

groups, while all other metabolites were fixed at constant values throughout the experiment. 
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Additionally, boundaries for metabolite concentrations, as well as the gamma (responsible 

for the Lorentzian part of the spectrum) and sigma (responsible for the Gaussian part of the 

spectrum) parameters were defined from 0 to infinity to ensure physiologically meaningful 

results. 

Spectral Broadening – BOLD Effect Correction 

Changes in the calculated glutamate concentration may be influenced by the blood 

oxygenation level dependent (BOLD) effect. Oxygenated blood flows into brain regions 

involved in the task, which can modify the local magnetic field. As a result, the magnetic 

resonance spectrum may become narrower, potentially leading to incorrect metabolite 

quantification. To ensure that the observed changes are due to actual variations in glutamate 

concentration rather than being influenced by the BOLD effect, the data were reanalyzed 

after equalizing spectral broadening across groups. This procedure was introduced to 

isolate the contribution of the BOLD effect and confirm that the observed changes in 

glutamate concentration reflected true metabolic alterations. 

The BOLD correction procedure was conducted using a custom Python script designed to 

utilize the FSL-MRS functions available in open-source software. This approach, based on 

spectral broadening, has become commonly used, however, researchers often rely on 

custom scripts and propose different details due to the lack of standardization. 

The first step in this procedure was to measure the full width at half maximum (FWHM) 

of creatine (Cr) using the FSL-MRS function. The group with the largest Cr FWHM was 

selected as the target, and a spectral broadening procedure was applied. The spectra were 

incrementally broadened through a stepwise apodization procedure until the desired 

FWHM was reached. The FWHM of the resulting spectra was compared to the target value, 

and the spectrum closest to the target was selected. This process was repeated until all 

groups had similar Cr FWHM values. 

The broadening procedure was conducted separately for two different data groupings: by 

stimulation type, with three groups (Polish words, false font strings, and rest), and by 

stimulation and delays, resulting in eight groups (words with a 500 ms delay, words with  

a 1000 ms delay, words with a 3000 ms delay, words with a 4500 ms delay, false font 
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strings (BACS) with a 500 ms delay, false font strings (BACS) with a 1000 ms delay, false 

font strings (BACS) with a 3000 ms delay, false font strings (BACS) with a 4500 ms delay). 

All data packages used in this step were previously created for the conventional averaged 

approach. Finally, all analyses were repeated to determine whether the observed changes 

in glutamate concentration could be contaminated by the BOLD effect rather than reflecting 

true metabolic changes. 

2.3.  Statistical analyses 

Data from the 3T and 7T scanners were processed as independent datasets in separate 

analyses. All statistics were performed using JASP (most of them on version 0.19, while 

some Bayesian ANOVA were conducted on version 0.95 for technical reasons). 

2.3.1. Behavioral and reading-related tasks 

Behavioral and reading-related tasks were analyzed using separate ANOVAs, with group 

(dyslexic, control) and sex (female, male) as between-subject factors. All participants 

scanned using 7T or 3T scanners (separately for each scanner) were included in this 

analysis, without excluding participants with low-quality spectra. 

2.3.2. fMRS analysis 

Analyses were conducted separately for the left superior temporal sulcus and the medial 

prefrontal cortex. The visual word form area was omitted from the analysis due to  

an insufficient number of high-quality data. 

All fMRS analyses were performed using repeated measures ANOVA, with group 

(dyslexic, control) and sex (female, male) as between-subject factors. Age and gray matter 

volume (GMV) were included as covariates to control for potential confounding effects.  

The data, divided into groups based on stimulation, were analyzed with the type of 

stimulation (words, false font strings, rest) as the within-subject factor. Additionally, data 

grouped based on delays and the dynamic-averaged approach were analyzed with the type 

of visual stimulation (words, false font strings) and delay (500 ms, 1000 ms, 3000 ms,  

4500 ms) as within-subject factors. 
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To follow up on significant interaction effects observed in the ANOVA, planned pairwise 

contrasts were conducted within the ANOVA framework using custom contrast weights. 

Specifically, comparisons were performed (a) between the two stimulation types at each 

level of delay, and (b) between the delays within each stimulation type. Contrasts were 

specified only for theoretically relevant pairs of conditions and did not include  

cross-condition comparisons (e.g., words at 500 ms vs false font strings at 1000 ms), as 

these were not meaningful in the context of the study design. Contrast weights of 1 and -1 

were applied to the conditions of interest, and the corresponding t, p, and effect size (d) 

values were reported. Effect size was interpreted as small (d ≤ 0.2), medium (0.2 < d < 0.8), 

and large (d ≥ 0.8). 

Bayes Factors from the Bayesian ANOVA for the inclusion of specific effects (BFincl) were 

computed using the ‘across matched model’ method. A BFincl value greater than 3 was 

interpreted as supporting the alternative hypothesis, and a value less than 
1

3
 as supporting 

the null hypothesis. Values between 
1

3
 and 3 were considered insufficient evidence to favor 

either hypothesis (Keysers et al., 2020, Kelter, 2020). Bayes Factors were calculated for 

main effects and their interactions, but not for covariates or interactions involving 

covariates. 

2.3.3. 7T and 3T scanners comparison 

For parameters describing spectra quality, a paired samples t-test was conducted, with t, p, 

and effect size (d) reported. Cohen’s d effect size was interpreted as small (d ≤ 0.2), medium 

(0.2 < d < 0.8), and large (d ≥ 0.8). When the assumption of normality was violated 

(Shapiro-Wilk test: p < 0.05), a nonparametric Wilcoxon signed-rank test was used instead 

of the parametric t-test. For nonparametric tests, the effect size r was calculated and 

interpreted as small (|r| ~ 0.1), medium (|r| ~ 0.3), and large (|r| ≥ 0.5). 
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3. Results 

3.1.  Experiment 1 – fMRS on 7T scanner 

 

3.1.1. Behavioral results 

Functional magnetic resonance spectroscopy (fMRS) was conducted on a 7 Tesla scanner 

with 59 participants—29 diagnosed with dyslexia and 30 typical readers. The groups were 

matched for sex, age, and family socio-economic status, based on parents’ educational 

level. 

Volunteers diagnosed with dyslexia had higher scores on the Polish version of the Adult 

Reading History Questionnaire (ARHQ-PL), indicating a higher risk for dyslexia. 

Participants in both groups had intelligence quotients (Iqs) within the normal intellectual 

range, although the dyslexic group scored lower, including the nonverbal subscale (see 

Table 2). 

The control and dyslexic groups also differed in reading ability. Typical readers responded 

faster in rapid automatized naming and scored higher on phonological awareness tasks. 

There were no sex differences in the demographic characteristics or behavioral results. 

Additionally, the interaction between sex and group was not statistically significant for 

reading-related tasks (see Table 3). 
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Table 2. Descriptive statistics for demographic characteristics separately for females and males in dyslexic and control groups. For all comparisons,  

F-statistics, p-values (in brackets), and the partial eta squared (2
p) are provided.  

 DYS F 

(n = 13) 

CON F 

(n = 14) 

DYS M 

(n = 16) 

CON M 

(n = 16) 

 

group 

F(1,57) 

 

2
p 

 

 

sex 

F(1,57) 

 

2
p 

 

 

group*sex 

F(1, 57) 

 

2
p 

 
 M SD M SD M SD M SD 

Age 20.978 4.055 21.429 3.530 19.698 3.451 20.424 2.835 0.423 

(0.518) 

0.008 1.597 

(0.212) 

0.028 0.023 

(0.880) 

4.194×

10-4 

Mother’s 

education 

(years) 

16.500 2.693 16.071 2.814 17.156 4.032 17.250 1.983 0.046 

(0.831) 

8.315×

10-4 

1.375 

(0.246) 

0.024 0.111 

(0.740) 

0.002 

Father’s 

education 

(years) 

15.333a 3.869a 16.643 4.125 17.000 2.608 16.563 3.032 0.235b 

(0.630) 

0.004 0.776b 

(0.382) 

0.014 0.941b 

(0.336) 

0.017 

IQ 102.154 14.577 111.143 7.655 102.500 11.425 114.625 9.952 13.278 

(< .001) 

0.194 0.437 

(0.512) 

0.008 0.293 

(0.591) 

0.005 

Nonverbal IQ 

(scaled score) 

10.000 2.887 11.571 2.277 10.375 3.074 12.813 2.040 8.702 

(0.005) 

0.137 1.414 

(0.239) 

0.025 0.406 

(0.527) 

0.007 

ARHQ-PL 53.923 9.613 25.214 5.162 48.375 11.899 23.688 7.409 130.307 

(< .001) 

0.703 2.288 

(0.136) 

0.040 0.739 

(0.394) 

0.013 

Note. CON – control group; DYS – dyslexic group; F – females; M – males; ARHQ-PL – Polish version of the Adult Reading History Questionnaire.  

Boldface indicates statistical significance at p < .05 level. 
an = 12 (one participant did not provide information about the father’s education) 
bF(1,56) 
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Table 3. Behavioral results from reading and reading-related tasks. For all comparisons, F-statistics, p-values (in brackets), and the partial eta squared (2
p) are provided.  

 DYS F 

(n = 13) 

CON F 

(n = 14) 

DYS M 

(n = 16) 

CON M 

(n = 16) 

 

group 

F(1,57) 

 

2
p 

 

 

sex 

F(1,57) 

 

2
p 

 

 

group*s

ex 

F(1,57) 

 

2
p 

 
 M SD M SD M SD M SD 

words/min 102.923 29.033 137.500 12.451 109.000 16.042 133.500 12.628 38.201  

(< .001)* 

0.410 0.047 

(0.829) 

8.577×

10-4 

1.111 

(0.296) 

0.020 

pseudowords/min 54.769 16.813 85.357 16.570 57.063 13.031 82.688 17.083 45.787  

(< .001)* 

0.454 0.002 

(0.964) 

3.732×

10-5 

0.357 

(0.553) 

0.006 

reading 

comprehension 

(sec)  

69.462 29.993 40.929 6.810 65.875 20.513 46.500 7.439 24.909  

(< .001)* 

0.312 0.043 

(0.837) 

7.768×

10-4 

0.910 

(0.344) 

0.016 

RAN objects 

(sec) 

32.462 4.521 

 

28.000 5.533 33.625 6.302 28.813 2.949 12.637  

(< .001)* 

0.187 0.574 

(0.452) 

0.010 0.018 

(0.893) 

3.289×

10-4 

RAN colors  

(sec) 

35.000 4.950 28.929 3.174 36.813 7.287 31.875 3.500 17.355  

(< .001)* 

0.240 3.243 

(0.077) 

0.056 0.184 

(0.670) 

0.003 

RAN digits 

(sec) 

21.154 4.652 17.000 3.113 19.000 4.099 16.500 2.449 12.242  

(< .001)* 

0.182 1.947 

(0.168) 

0.034 0.756 

(0.388) 

0.014 

RAN letters 

(sec) 

23.385 4.194 18.786 1.929 22.250 3.890 20.000 2.757 15.719  

(< .001)* 

0.222 0.002 

(0.963) 

3.867×

10-5 

1.849 

(0.179) 

0.033 

phoneme deletion 

(% correct) 

68.638 30.401 94.505 5.377 77.644 26.656 93.751 7.414 15.446  

(< .001)* 

0.219 0.597 

(0.443) 

0.011 0.835 

(0.365) 

0.015 

spoonerisms 

phonemes  

(% correct) 

51.098 41.634 88.776 12.441 43.750 35.174 86.159 7.591 30.555  

(< .001)* 

0.357 0.473 

(0.494) 

0.009 0.107 

(0.745) 

0.002 
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spoonerisms 

syllables 

(% correct) 

43.590 35.051 74.999 25.943 41.666 31.031 79.166 15.515 22.996  

(< .001)* 

0.295 0.024 

(0.877) 

4.426×

10-4 

0.180 

(0.673) 

0.003 

orthographic 

awareness 

(accuracy/time) 

0.369 0.155 0.606 0.119 0.327 0.139 0.504 0.131 33.779  

(< .001)* 

0.380 4.118 

(0.047) 

0.070 0.702 

(0.406) 

0.013 

Note. CON – control group; DYS – dyslexic group; F – females; M – males; RAN – rapid automatized naming. Boldface indicates statistical significance at p < .05 level.  

* Significance after Bonferroni correction for 11 planned comparisons for reading-related tasks; threshold for statistical significance after correction was set at  

p = 0.00455; 
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3.1.2. Task During fMRS Scanning 

Participants were instructed to respond by clicking on the response pad every time they saw 

a target word on the screen. The accuracy of target recognition was assessed by calculating 

the percentage of correct responses. Data were analyzed only from good-quality scans. One 

female participant from the control group was omitted from the analysis due to the lack of 

saved task logs. 

The total number of responses (correct + incorrect) was similar in both brain regions. In the 

control region, the mean number of responses was 115.296 (SD = 47.651, Min = 45,  

Max = 415), while in the left superior temporal sulcus, the mean was 112.146 (SD = 48.945, 

Min = 48, Max = 418). 

Brain regions were scanned in pseudorandom order. The medial prefrontal cortex was 

scanned first 28 times (26 for valid scans; one participant did not have saved logs, and one 

participant clicked the pad 415 times), second 5 times, and third 22 times. The left superior 

temporal sulcus was scanned first 21 times, second 26 times (24 for valid scans; one 

participant did not have saved logs, and one participant clicked the pad over 400 times), 

and third only 3 times. 

The analysis of task accuracy percentage during the scan was conducted using univariate 

ANOVA. There were no statistically significant effects of group, sex, or interaction 

between group and sex in either the medial prefrontal cortex or the left superior temporal 

sulcus (see Table 4). 
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Table 4. Behavioral results from the task performed during the scan for data that meet the quality criteria. For all comparisons, F-statistics, p-values (in brackets), and the 

partial eta squared (2
p) are provided.  

Target recognition 

(% correct) 

DYS F 

 

CON F 

 

DYS M 

 

CON M 

 

 

group 

F(1,53) 

F(1,47) 

 

2
p 

 

 

sex 

F(1,53) 

F(1,47) 

 

2
p 

 

 

group*sex 

F(1,53) 

F(1,47) 

 

2
p 

 
 M SD M SD M SD M SD 

Medial prefrontal 

cortex 

 

68.121 7.415 69.601 11.401 62.056 16.373 68.333 11.104 1.412 

(0.240) 

0.027 1.262 

(0.267) 

0.025 0.540 

(0.466) 

0.011 

Left superior 

temporal sulcus 

 

65.385 15.341 65.297 17.659 60.150 12.183 70.853 6.500 1.894 

(0.176) 

0.041 0.002 

(0.967) 

3.938×

10-5 

1.957 

(0.169) 

0.043 
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3.1.3. fMRS Results  

3.1.3.1. Quality Assessment  

The quality of the data, divided into smaller packages based on stimulation type or delay, 

was assessed using parameters calculated by the FSL-MRS software. To assess quality, the 

signal-to-noise ratio (SNR), the percentage of Cramer-Rao lower bound (%CRLB), and the 

full width at half maximum (FWHM) for glutamate and NAA were measured. Analyzed 

packages were checked against quality criteria, %CRLB for glutamate cannot be higher 

than 20% to accurately calculate its concentration. No packages had to be excluded. The 

maximum %CRLB for glutamate in the medial prefrontal cortex was 7.079% for the 

package with words stimulation at 3000 ms, and the highest %CRLB value in the left 

superior temporal sulcus was 13.301% for words stimulation at 500 ms. The results are 

presented in Table 5. 

Table 5. Quality parameters of the data, grouped based on stimulation type and delay. 

Packages type 
Max # 

signals 

Glutamate NAA 

Mean Sd Min Max Mean Sd Min Max 

Signal-to-noise ratio (SNR) in mPFC (55 participants) 

Words  78 13.678 2.591 8.421 20.979 35.714 10.144 18.354 64.502 

Bacs  78 13.767 2.578 8.942 20.716 35.967 10.153 17.326 65.083 

Rest 78 13.657 2.520 9.048 20.764 36.064 10.127 17.337 65.512 

words 500 ms 26 8.049 1.451 4.775 11.420 20.955 5.652 10.780 35.521 

words 1000 ms 26 8.010 1.423 5.150 11.803 21.004 5.705 11.624 36.303 

words 3000 ms 26 7.948 1.545 5.188 12.138 20.768 5.943 9.964 36.979 

words 4500 ms 26 7.900 1.353 5.145 10.882 20.937 5.681 10.292 34.921 

bacs 500 ms 26 8.029 1.423 5.219 11.823 20.885 5.675 9.984 36.502 

bacs 1000 ms 26 8.067 1.528 5.289 11.682 21.116 5.910 9.529 37.260 

bacs 3000 ms 26 8.210 1.429 5.744 11.662 21.228 5.830 10.535 36.883 

bacs 4500 ms 26 8.023 1.484 5.254 12.186 21.104 5.909 10.516 38.110 

Signal-to-noise ratio (SNR) is STS (49 participants) 

Words  78 10.749 3.013 5.438 19.281 38.745 11.293 18.336 75.250 

Bacs  78 10.859 3.031 5.186 18.885 38.835 11.658 18.356 74.775 

Rest 78 10.748 2.983 5.439 17.960 38.637 11.370 17.174 70.614 

words 500 ms 26 6.240 1.780 3.311 10.711 22.475 6.543 11.062 41.651 

words 1000 ms 26 6.249 1.737 3.186 10.754 22.562 6.544 10.602 41.833 

words 3000 ms 26 6.234 1.650 3.296 10.911 22.555 6.345 10.374 42.523 

words 4500 ms 26 6.326 1.784 3.080 11.159 22.558 6.633 10.647 42.442 
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bacs 500 ms 26 6.310 1.733 3.286 10.643 22.558 6.696 10.107 42.322 

bacs 1000 ms 26 6.277 1.732 2.784 10.742 22.536 6.722 10.538 43.356 

bacs 3000 ms 26 6.290 1.705 3.237 10.566 22.496 6.605 11.072 42.162 

bacs 4500 26 6.274 1.718 3.164 10.065 22.529 6.596 10.607 40.644 

%CRLB in mPFC (55 participants) 

Words  78 2.733 0.500 1.894 4.375 2.078 0.498 1.044 3.420 

Bacs  78 2.737 0.486 1.943 3.816 2.118 0.549 1.049 3.510 

Rest 78 2.798 0.597 1.969 4.820 2.217 0.689 1.128 4.668 

words 500 ms 26 4.009 0.930 2.598 6.595 3.085 0.943 1.673 5.581 

words 1000 ms 26 3.981 0.869 2.564 6.023 3.115 0.887 1.797 5.325 

words 3000 ms 26 4.081 1.052 2.529 7.079 3.277 1.167 1.620 7.028 

words 4500 ms 26 4.035 0.880 2.673 6.432 3.073 0.883 1.715 5.387 

bacs 500 ms 26 3.969 0.876 2.551 6.477 3.061 0.882 1.775 5.338 

bacs 1000 ms 26 3.942 0.842 2.570 6.302 2.969 0.796 1.607 5.055 

bacs 3000 ms 26 3.978 0.943 2.625 6.664 3.110 0.992 1.372 5.881 

Bacs 4500 ms 26 4.090 0.972 2.533 6.539 3.251 1.019 1.754 6.414 

%CRLB in STS (49 participants) 

Words 78 3.776 0.966 2.501 7.379 2.317 0.872 1.115 5.428 

Bacs  78 3.761 0.960 2.435 6.711 2.291 0.762 1.095 4.652 

Rest 78 3.761 0.954 2.437 6.691 2.308 0.653 1.134 4.481 

words 500 ms 26 5.406 1.848 3.267 13.301 3.422 1.569 1.346 9.627 

words 1000 ms 26 5.137 1.389 3.223 8.834 3.012 1.134 1.349 6.823 

words 3000 ms 26 5.212 1.431 3.248 9.468 3.134 1.225 1.341 7.467 

words 4500 ms 26 5.212 1.368 3.220 8.630 3.141 0.931 1.354 5.106 

bacs 500 ms 26 5.249 1.460 3.267 9.212 3.200 1.277 1.326 8.341 

bacs 1000 ms 26 5.180 1.410 3.227 9.013 3.120 1.108 1.310 7.557 

bacs 3000 ms 26 5.245 1.499 3.267 10.046 3.294 1.380 1.366 8.545 

bacs 4500 ms 26 5.168 1.476 3.218 9.368 3.151 1.155 1.373 6.881 

FWHM in mPFC (55 participants) 

Words  78 26.422 3.437 20.806 34.103 13.807 3.394 8.331 20.573 

Bacs 78 26.407 3.444 20.952 34.113 13.872 3.504 8.337 20.778 

Rest 78 26.313 3.286 20.857 33.919 13.930 3.610 8.314 20.854 

words 500 ms 26 26.311 3.340 20.877 34.278 13.842 3.471 8.313 20.756 

words 1000 ms 26 26.266 3.236 20.646 33.145 13.845 3.362 8.339 19.871 

words 3000 ms 26 26.185 3.179 20.925 33.749 13.905 3.533 8.366 21.303 

words 4500 ms 26 26.408 3.448 20.865 34.439 13.947 3.546 8.354 21.355 

bacs 500 ms 26 26.351 3.374 21.014 33.395 13.811 3.450 8.373 20.659 

bacs 1000 ms 26 26.439 3.556 20.923 35.083 13.910 3.553 8.425 21.833 

bacs 3000 ms 26 26.384 3.390 20.962 34.232 13.822 3.494 8.214 20.757 
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bacs 4500 ms 26 26.262 3.267 20.889 33.953 13.862 3.481 8.234 20.823 

FWHM in STS (49 participants) 

Words  78 26.313 2.779 21.801 31.974 13.460 2.894 8.926 20.868 

Bacs  78 26.371 2.841 21.770 32.880 13.456 2.786 8.827 19.806 

Rest 78 26.334 2.784 21.875 32.898 13.486 2.792 8.930 19.846 

words 500 ms 26 26.266 2.766 21.714 31.982 13.498 2.935 8.967 20.474 

words 1000 ms 26 26.374 2.809 21.709 32.820 13.369 2.752 8.827 19.839 

words 3000 ms 26 26.291 2.743 21.652 33.099 13.417 2.842 8.967 20.014 

words 4500 ms 26 26.332 2.729 21.692 32.151 13.341 2.644 8.912 19.299 

bacs 500 ms 26 26.293 2.790 21.843 32.219 13.394 2.735 8.903 19.240 

bacs 1000 ms 26 26.381 2.889 21.737 32.802 13.412 2.789 8.789 19.726 

bacs 3000 ms 26 26.307 2.740 21.676 32.359 13.519 2.924 8.750 21.020 

bacs 4500 ms 26 26.316 2.785 21.629 32.126 13.402 2.744 8.814 19.029 
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3.1.3.2. Data grouped by stimulation type 

Medial prefrontal cortex 

The analyzed data from the medial prefrontal cortex had the following quality parameters: 

signal-to-noise ratio for Glu (M = 13.70, SD = 2.56) and NAA (M = 35.92, SD = 10.14), 

%CRLB for Glu (M = 2.76, SD = 0.53) and NAA (M = 2.14, SD = 0.58), and FWHM for 

Glu (M = 26.38, SD = 3.39) and NAA (M = 13.87, SD = 3.50).  

The analysis of within-subject effects in the medial prefrontal cortex revealed no significant 

main effect of stimulation (F(2, 52) = 0.488, p = 0.615, ²ₚ = 0.010, BFincl = 0.911), 

suggesting that the different types of conditions did not have a major effect on glutamate 

concentration. However, a statistically significant interaction was found between 

stimulation and sex (F(2, 52) = 3.173, p = 0.046, ²ₚ = 0.061, BFincl = 0.898). Contrasts 

revealed differences in females between false font strings and rest (t(49) = 3.206, p = 0.002, 

d = 0.420), and between words and rest (t(49) = 2.730, p = 0.009, d = 0.450); for both visual 

stimulations, glutamate concentration was higher than during rest (see Figure 14).  

No differences between types of stimulation were found in males. 

 

Figure 14. Glutamate concentration changes in response to visual stimulation in the medial prefrontal cortex 

on 7 Tesla: (a) significant differences in females, with higher glutamate concentration during stimulation than 

at rest; (b) no significant differences in males. False font strings were presented in BACS font. 

No statistically significant effects were observed for the interaction between stimulation 

and group (F(2, 52) = 0.597, p = 0.553, ²ₚ = 0.012, BFincl = 0.171), between stimulation, 

group, and sex (F(2, 52) = 2.008, p = 0.140, ²ₚ = 0.039, BFincl = 0.621) or between group 

and sex (F(1, 53) = 0.349, p = 0.558, ²ₚ = 0.007, BFincl = 0.553). Furthermore, no 
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significant main effects of group (F(1, 53) = 1.700, p = 0.198, ²ₚ = 0.034, BFincl = 0.671) 

or sex (F(1, 53) = 2.842  10-6, p = 0.999, ²ₚ = 5.799  10-8, BFincl = 0.400) were found. 

After BOLD correction 

No main effect of stimulation was observed (F(2, 52) = 0.424, p = 0.655, ²ₚ = 0.009,  

BFincl = 0.386). Furthermore, the statistically significant interaction between stimulation 

and sex was no longer significant after the broadening procedure (F(2, 52) = 1.796,  

p = 0.171, ²ₚ = 0.035, BFincl = 0.300). Moreover, no statistically significant interaction 

between stimulation and group was found (F(2, 52) = 1.090, p = 0.340, ²ₚ = 0.022,  

BFincl = 0.299), between stimulation, group, and sex (F(2, 52) = 1.664, p = 0.195,  

²ₚ = 0.033, BFincl = 0.515), between group and sex (F(1, 53) = 0.205, p = 0.653,  

²ₚ = 0.004, BFincl = 0.518). Additionally, no significant effect of group (F(1, 53) = 1.433, 

p = 0.237, ²ₚ = 0.028, BFincl = 0.590) or sex (F(1, 53) = 0.005, p = 0.944,  

²ₚ = 1.020  10-4, BFincl = 0.385). 

Left superior temporal sulcus 

The analyzed data from the left superior temporal sulcus had the following quality 

parameters: signal-to-noise ratio for Glu (M = 10.79, SD = 3.01) and NAA (M = 38.74,  

SD = 11.44), %CRLB for Glu (M = 3.77, SD = 0.96) and NAA (M = 2.31, SD = 0.76), and 

FWHM for Glu (M = 26.34, SD = 2.80) and NAA (M = 13.47, SD = 2.82).  

In the left superior temporal sulcus, the main effect of stimulation was not significant  

(F(2, 46) = 0.257, p = 0.774, ²ₚ = 0.006, BFincl = 0.163). However, a statistically significant 

interaction between stimulation and sex was observed (F(2, 46) = 4.447, p = 0.015,  

²ₚ = 0.094, BFincl = 1.587). This effect was driven by higher glutamate concentration in 

females after visual stimulation with false font strings (t(43) = 2.436, p = 0.019, d = 0.307) 

compared to rest. Moreover, a trend-level difference was observed in females between 

words and rest (t(43) = 1.907, p = 0.063, d = 0.245) with higher glutamate concentration 

after stimulation, and in males between words and rest (t(43) = -1.884, p = 0.066,  

d = -0.247) with lower glutamate concentration after stimulation (see Figure 15). 



 77 

 

Figure 15. Glutamate concentration changes in response to visual stimulation in the left superior temporal 

sulcus on 7 Tesla scanner: (a) differences in females; (b) differences in males. 

Glutamate concentration also depended on gray matter volume within the analyzed voxels  

(F(1, 47) = 8.585, p = 0.005, ²ₚ = 0.166, BFincl = 12.341). Additionally, a trend-level effect 

was observed due to participants’ age (F(1, 47) = 3.258, p = 0.078, ²ₚ = 0.070,  

BFincl = 1.692). No statistically significant interaction between stimulation and group was 

found (F(2, 46) = 0.288, p = 0.751, ²ₚ = 0.007, BFincl = 0.130), between stimulation, group, 

and sex (F(2, 46) = 0.800, p = 0.453, ²ₚ = 0.018, BFincl = 0.345), or between group and sex 

(F(1, 47) = 0.042, p = 0.838, ²ₚ = 9.862  10-4, BFincl = 0.604). Additionally, no significant 

effect of group (F(1, 47) = 1.757, p = 0.192, ²ₚ = 0.039, BFincl = 0.833) or sex  

(F(1, 47) = 0.075, p = 0.785, ²ₚ = 0.002, BFincl = 0.503). 

After BOLD correction 

In the left superior temporal sulcus, the main effect of stimulation was not significant  

(F(2, 46) = 1.894, p = 0.157, ²ₚ = 0.042, BFincl = 0.077). Neither was the interaction 

between stimulation and sex (F(2, 46) = 0.375, p = 0.689, ²ₚ = 0.009, BFincl = 0.290).  

A statistically significant effect of gray matter volume was observed (F(1, 47) = 7.750,  

p = 0.008, ²ₚ = 0.153, BFincl = 9.246), and a trend-level influence of age was revealed  

(F(1, 47) = 3.617, p = 0.064, ²ₚ = 0.078, BFincl = 2.221). Furthermore, no statistically 

significant interaction between stimulation and group was revealed (F(2, 46) = 1.786,  

p = 0.174, ²ₚ = 0.040, BFincl = 0.531), between stimulation, group, and sex  

(F(2, 46) = 0.056, p = 0.946, ²ₚ = 0.001, BFincl = 0.173), or between group and sex  

(F(1, 47) = 0.008, p = 0.931, ²ₚ = 1.777  10-4, BFincl = 0.564). Additionally, no significant 
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effect of group (F(1, 47) = 2.056, p = 0.159, ²ₚ = 0.046, BFincl = 0.875) or sex  

(F(1, 47) = 0.116, p = 0.735, ²ₚ = 0.003, BFincl = 0.492). 

3.1.3.3. Data grouped by delay 

Medial prefrontal cortex 

The analyzed data from the medial prefrontal cortex had the following quality parameters: 

signal-to-noise ratio for Glu (M = 8.03, SD = 1.45) and NAA (M = 21.00, SD = 5.79), 

%CRLB for Glu (M = 4.01, SD = 0.92) and NAA (M = 3.12, SD = 0.95), and FWHM for 

Glu (M = 26.33, SD = 3.35) and NAA (M = 13.87, SD = 3.49).  

Results of the ANOVA analysis with visual stimulation type and delays as within-subject 

factors showed a statistically significant interaction between delay, group, and sex  

(F(3, 51) = 2.754, p = 0.045, ²ₚ = 0.053, BFincl = 1.901). Contrasts revealed a statistically 

significant difference for typical reading females between delays of 3000 ms and 4500 ms  

(t(49) = 2.042, p = 0.047, d = 0.336), with a stronger glutamate response after 3000 ms. 

Females diagnosed with dyslexia had significantly higher glutamate concentrations 500 ms 

after stimulation compared to 3000 ms (t(49) = 2.560, p = 0.014, d = 0.351) and 4500 ms  

(t(49) = 2.282, p = 0.027, d = 0.469). A trend-level difference was observed between 

1000 ms (higher glutamate concentration) and 4500 ms (t(49) = 1.895, p = 0.064,  

d = 0.316). For males with dyslexia, a significantly higher glutamate level was observed 

3000 ms after stimulation compared to 1000 ms (t(49) = -2.914, p = 0.005, d = -0.500) and 

4500 ms (t(49) = 2.816, p = 0.007, d = 0.484). Additionally, a trend-level difference was 

found between delays of 500 ms and 1000 ms (t(49) = 1.742, p = 0.088, d = 0.307), with 

lower glutamate after 1000 ms. A trend-level group difference for males was found after 

1000 ms (t(49) = 1.774, p = 0.082, d = 0.651) and 4500 ms (t(49) = 1.897, p = 0.064,  

d = 0.683), with higher glutamate concentration in the control group compared to the 

dyslexic group (see Figure 16). No differences were found between the groups of female 

participants, nor between sexes for both typical readers and those diagnosed with dyslexia.  
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Figure 16. Statistically significant interaction in the medial prefrontal cortex between delay, group, and sex 

on 7 Tesla scanner: (a) glutamate concentration differences between delays in females from the control group; 

(b) glutamate concentration differences between delays in females from the dyslexic group; (c) no statistically 

significant differences between delays in males from the control group; (d) glutamate concentration 

differences between delays in males from the dyslexic group; (e) glutamate concentration differences between 

the control and dyslexic groups in males 1000 ms after stimulation; (f) glutamate concentration differences 

between the control and dyslexic groups in males 4500 ms after stimulation. 

No statistically significant effects of delay (F(3, 51) = 0.142, p = 0.934, ²ₚ = 0.003,  

BFincl = 0.329) and stimulation type (F(1, 53) = 1.352, p = 0.251, ²ₚ = 0.027,  

BFincl = 1.032) were observed. Moreover no statistically significant interactions between 

stimulation type and group (F(1, 53) = 1.504, p = 0.226, ²ₚ = 0.030, BFincl = 0.314), 

between stimulation type and sex (F(1, 53) = 0.178, p = 0.675, ²ₚ = 0.004, BFincl = 0.246), 
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between stimulation type, group and sex (F(1, 53) = 0.234, p = 0.631, ²ₚ = 0.005,  

BFincl = 0.064), between delay and group (F(3, 51) = 1.395, p = 0.247, ²ₚ = 0.028,  

BFincl = 0.114), between delay and sex (F(3, 51) = 1.763, p = 0.157, ²ₚ = 0.035,  

BFincl = 0.248), between stimulation type and delay (F(3, 51) = 1.468, p = 0.226,  

²ₚ = 0.029, BFincl = 1.002), between stimulation type, delay and group (F(3, 51) = 1.500, 

p = 0.217, ²ₚ = 0.030, BFincl = 0.721), between stimulation type, delay and sex  

(F(3, 51) = 0.277, p = 0.842, ²ₚ = 0.006, BFincl = 0.092), between stimulation type, delay, 

group and sex (F(3, 51) = 0.705, p = 0.550, ²ₚ = 0.014, BFincl = 0.029) and between group 

and sex (F(1, 53) = 0.281, p = 0.599, ²ₚ = 0.006, BFincl = 0.418) were observed. In addition, 

no statistically significant effects of group (F(1, 53) = 1.824, p = 0.183, ²ₚ = 0.036,  

BFincl = 0.737) and sex (F(1, 53) = 0.076, p = 0.783, ²ₚ = 0.002, BFincl = 0.342) were found.  

After BOLD correction 

After the BOLD correction procedure, the statistically significant interaction between 

delay, group, and sex was no longer observed. Additionally, no other effects or interactions 

were found to be significant or at trend-level. No statistically significant effects of delay 

(F(3, 51) = 0.847, p = 0.470, ²ₚ = 0.017, BFincl = 0.136) and stimulation type  

(F(1, 53) = 0.260, p = 0.612, ²ₚ = 0.005, BFincl = 0.423) were revealed. Furthermore no 

statistically significant interactions between stimulation type and group (F(1, 53) = 0.659, 

p = 0.421, ²ₚ = 0.013, BFincl = 0.301), between stimulation type and sex (F(1, 53) = 0.493, 

p = 0.486, ²ₚ = 0.010, BFincl = 0.234), between stimulation type, group and sex  

(F(1, 53) = 0.007, p = 0.936, ²ₚ = 1.334  10-4, BFincl = 0.292), between delay and group 

(F(3, 51) = 1.045, p = 0.375, ²ₚ = 0.021, BFincl = 0.073), between delay and sex  

(F(3, 51) = 1.911, p = 0.130, ²ₚ = 0.038, BFincl = 0.174), between delay, group and sex 

(F(3, 51) = 0.961, p = 0.413, ²ₚ = 0.019, BFincl = 0.057), between stimulation type and 

delay (F(3, 51) = 1.866, p = 0.138, ²ₚ = 0.037, BFincl = 0.645), between stimulation type, 

delay and group (F(3, 51) = 0.789, p = 0.502, ²ₚ = 0.016, BFincl = 0.171), between 

stimulation type, delay and sex (F(3, 51) = 0.468, p = 0.705, ²ₚ = 0.009, BFincl = 0.414), 

between stimulation type, delay, group and sex (F(3, 51) = 0.734, p = 0.533, ²ₚ = 0.015, 

BFincl = 0.027) and between group and sex (F(1, 53) = 0.247, p = 0.622, ²ₚ = 0.005,  

BFincl = 0.494) were observed. In addition, no statistically significant effects of group  
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(F(1, 53) = 1.554, p = 0.218, ²ₚ = 0.031, BFincl = 0.560) and sex (F(1, 53) = 0.042,  

p = 0.839, ²ₚ = 8.485  10-4, BFincl = 0.350) were found.  

 Left superior temporal sulcus 

The analyzed data from the left superior temporal sulcus had the following quality 

parameters: signal-to-noise ratio for Glu (M = 6.28, SD = 1.73) and NAA (M = 22.53,  

SD = 6.59), %CRLB for Glu (M = 5.23, SD = 1.49) and NAA (M = 3.18, SD = 1.22), and 

FWHM for Glu (M = 26.32, SD = 2.78) and NAA (M = 13.42, SD = 2.80).  

The main effects of delays and stimulation type were not statistically significant  

(F(3, 45) = 1.604, p = 0.192, ²ₚ = 0.036, BFincl = 0.054), (F(3, 45) = 0.651, p = 0.424,   

²ₚ = 0.015, BFincl = 0.176) respectively. No statistically significant interactions between 

stimulation type and group (F(1, 53) = 0.028, p = 0.869, ²ₚ = 6.427  10-4, BFincl = 0.183), 

between stimulation type and sex (F(1, 53) = 0.083, p = 0.774, ²ₚ = 0.002, BFincl = 0.372), 

between stimulation type, group and sex (F(1, 53) = 1.759  10-4, p = 0.989,  

²ₚ = 4.091  10-6, BFincl = 0.602), between delay and group (F(3, 51) = 0.450, p = 0.718, 

²ₚ = 0.010, BFincl = 0.017), between delay and sex (F(3, 51) = 1.437, p = 0.235,  

²ₚ = 0.032, BFincl = 0.097), between delay, group and sex (F(3, 51) = 0.571, p = 0.635,  

²ₚ = 0.013, BFincl = 0.077), between stimulation type, delay and group (F(3, 51) = 0.680, 

p = 0.566, ²ₚ = 0.016, BFincl = 0.243), between stimulation type, delay and sex  

(F(3, 51) = 1.148, p = 0.332, ²ₚ = 0.026, BFincl = 4.840), between stimulation type, delay, 

group and sex (F(3, 51) = 0.744, p = 0.528, ²ₚ = 0.017, BFincl = 0.067) and between group 

and sex (F(1, 53) = 0.178, p = 0.675, ²ₚ = 0.004, BFincl = 0.604) were observed. In addition, 

no statistically significant effects of group (F(1, 53) = 1.740, p = 0.194, ²ₚ = 0.039,  

BFincl = 1.334) and sex (F(1, 53) = 0.028, p = 0.867, ²ₚ = 6.553  10-4, BFincl = 0.328) were 

found.  

Interestingly, a trend-level interaction between stimulation type and delay was observed 

(F(3, 45) = 2.272, p = 0.083, ²ₚ = 0.050, BFincl = 0.082). This was due to an increase in 

glutamate concentration 4500 ms after word stimulation compared to 500 ms  

(t(43) = -1.749, p = 0.087, d = -0.228) (see Figure 17). 
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Glutamate concentration in the left superior temporal sulcus also depended on gray matter 

volume within the analyzed voxels (F(1, 47) = 7.643, p = 0.008, ²ₚ = 0.151, BFincl = 5.550) 

and age (F(1, 47) = 4.759, p = 0.035, ²ₚ = 0.100, BFincl = 2.204). 

 

     
Figure 17. Glutamate concentration at different time delays in the left superior temporal sulcus on 7 Tesla 

scanner: (a) trend-level difference after word stimulation; (b) no statistically significant differences after false 

font string stimulation. 

After BOLD correction 

After the BOLD correction procedure, a trend-level interaction between stimulation type 

and delay remained significant (F(3, 45) = 2.317, p = 0.079, ²ₚ = 0.051, BFincl = 0.040); 

however, contrasts did not reveal the underlying cause for this. Additionally, gray matter 

volume (F(1, 47) = 7.646, p = 0.008, ²ₚ = 0.151, BFincl = 7.529) and age (F(1, 47) = 4.712, 

p = 0.036, ²ₚ = 0.099, BFincl = 2.450) significantly influenced glutamate concentration.  

No statistically significant effects of delay (F(3, 45) = 0.449, p = 0.719, ²ₚ = 0.010,  

BFincl = 0.048) and stimulation type (F(1, 53) = 0.191, p = 0.664, ²ₚ = 0.004,  

BFincl = 0.109) were revealed. No statistically significant interactions between stimulation 

type and group (F(1, 53) = 1.198, p = 0.280, ²ₚ = 0.027, BFincl = 0.265), between 

stimulation type and sex (F(1, 53) = 1.257, p = 0.268, ²ₚ = 0.028, BFincl = 0.257), between 

stimulation type, group and sex (F(1, 53) = 0.004, p = 0.947, ²ₚ = 1.037  10-4,  

BFincl = 0.450), between delay and group (F(3, 51) = 0.063, p = 0.979, ²ₚ = 0.001,  

BFincl = 0.015), between delay and sex (F(3, 51) = 1.443, p = 0.233, ²ₚ = 0.032,  

BFincl = 0.063), between delay, group and sex (F(3, 51) = 0.241, p = 0.867, ²ₚ = 0.006, 

BFincl = 0.052), between stimulation type, delay and group (F(3, 51) = 0.045, p = 0.987,  
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²ₚ = 0.001, BFincl = 0.008), between stimulation type, delay and sex (F(3, 51) = 0.972,  

p = 0.408, ²ₚ = 0.022, BFincl = 0.014), between stimulation type, delay, group and sex  

(F(3, 51) = 0.641, p = 0.590, ²ₚ = 0.015, BFincl = 0.071) and between group and sex  

(F(1, 53) = 0.171, p = 0.681, ²ₚ = 0.004, BFincl = 0.585) were observed. Additionally, no 

statistically significant effects of group (F(1, 53) = 1.892, p = 0.176, ²ₚ = 0.042,  

BFincl = 1.209) and sex (F(1, 53) = 0.054, p = 0.818, ²ₚ = 0.001, BFincl = 0.370) were found.  

3.1.3.4. Data analyzed using the dynamic-averaged approach 

Medial prefrontal cortex 

The model, considering both words and false font strings, with data analyzed using the 

dynamic module in FSL-MRS, did not reveal a significant main effect of delay  

(F(3, 51) = 1.586, p = 0.195, ²ₚ = 0.031, BFincl = 0.623) or stimulation type  

(F(1, 53) = 2.415, p = 0.127, ²ₚ = 0.047, BFincl = 0.574). Furthermore, no statistically 

significant interactions between stimulation type and group (F(1, 53) = 0.248, p = 0.620, 

²ₚ = 0.005, BFincl = 0.228), between stimulation type and sex (F(1, 53) = 1.139, p = 0.291, 

²ₚ = 0.023, BFincl = 0.188), between stimulation type, group and sex (F(1, 53) = 0.168,  

p = 0.684, ²ₚ = 0.003, BFincl = 0.260), between delay and group (F(3, 51) = 0.541,  

p = 0.655, ²ₚ = 0.011, BFincl = 0.058), between delay and sex (F(3, 51) = 1.466, p = 0.226, 

²ₚ = 0.029, BFincl = 0.103), between delay, group and sex (F(3, 51) = 1.658, p = 0.179,  

²ₚ = 0.033, BFincl = 0.364), between stimulation type and delay (F(3, 51) = 1.943,  

p = 0.125, ²ₚ = 0.038, BFincl = 0.084), between stimulation type, delay and sex  

(F(3, 51) = 0.188, p = 0.904, ²ₚ = 0.004, BFincl = 0.033), between stimulation type, delay, 

group and sex (F(3, 51) = 0.335, p = 0.800, ²ₚ = 0.007, BFincl = 0.014) and between group 

and sex (F(1, 53) = 0.534, p = 0.468, ²ₚ = 0.011, BFincl = 0.737) were observed. Moreover, 

no statistically significant effects of group (F(1, 53) = 1.447, p = 0.235, ²ₚ = 0.029,  

BFincl = 0.647) and sex (F(1, 53) = 0.005, p = 0.943, ²ₚ = 1.042  10-4, BFincl = 0.481) were 

found.  

However, a significant interaction between stimulation type, delay, and group was observed 

(F(3, 51) = 3.089, p = 0.029, ²ₚ = 0.059, BFincl = 7.021) (see Figure 18). This effect was 

driven by differences between words (lower glutamate levels) and false font strings at 

1000 ms after stimulation in the dyslexic group (t(49) = -2.746, p = 0.008, d = -0.420), and 
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between words (lower glutamate concentration) and false font strings at 3000 ms delay in 

the control group (t(49) = -2.538, p = 0.014, d = -0.305). Additionally, differences were 

observed between 500 ms and 1000 ms (t(49) = 2.955, p = 0.005, d = 0.441) and 1000 ms 

and 3000 ms (t(49) = -2.792, p = 0.007, d = -0.443) for individuals with dyslexia stimulated 

with words (weaker glutamate response after 1000 ms). Moreover, differences between 

500 ms and 3000 ms (t(49) = -2.049, p = 0.046, d = -0.232), 1000 ms and 3000 ms  

(t(49) = -2.641, p = 0.011, d = -0.308), and 3000 ms and 4500 ms (t(49) = 2.098, p = 0.041, 

d = 0.232) were observed for the control group stimulated using false font strings, with  

a stronger glutamate response after 3000 ms. A trend-level difference was found between 

500 ms and 4500 ms (lower glutamate) after word stimulation in the control group  

(t(49) = 1.989, p = 0.052, d = 0.272). Furthermore, a group difference between typical 

readers and individuals diagnosed with dyslexia was observed 1000 ms after word 

stimulation (t(49) = 2.038, p = 0.047, d = 0.648), with higher glutamate concentration in 

the control group.  

A trend-level interaction was observed between delay and gray matter volume  

(F(3, 51) = 2.481, p = 0.063, ²ₚ = 0.048). 
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Figure 18. Statistically significant differences in glutamate concentration in the medial prefrontal cortex 

using the dynamic-averaged approach on 7 Tesla scanner: (a) between delays in the control group after word 

stimulation; (b) between delays in the dyslexic group after word stimulation; (c) between delays in the control 

group after false font string stimulation; (d) no statistically significant difference between delays in the 

dyslexic group after false font string stimulation; (e) between word and false font string stimulation in the 

dyslexic group at 1000 ms; (f) between word and false font string stimulation in the control group at 3000 

ms; (g) between control and dyslexic groups at 1000 ms after word stimulation. 
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After BOLD correction 

Data analyzed after the bordering procedure showed no significant effects of delay  

(F(3, 51) = 1.742, p = 0.161, ²ₚ = 0.034, BFincl = 0.262) or stimulation type  

(F(1, 53) = 0.140, p = 0.710, ²ₚ = 0.003, BFincl = 0.276). No statistically significant 

interactions between stimulation type and group (F(1, 53) = 1.333, p = 0.254, ²ₚ = 0.026, 

BFincl = 0.478), between stimulation type and sex (F(1, 53) = 2.327, p = 0.134, ²ₚ = 0.045, 

BFincl = 0.482), between stimulation type, group and sex (F(1, 53) = 1.093  10-6, p = 0.999, 

²ₚ = 2.231  10-8, BFincl = 0.205), between delay and group (F(3, 51) = 0.272, p = 0.846, 

²ₚ = 0.006, BFincl = 0.052), between delay and sex (F(3, 51) = 1.357, p = 0.258,  

²ₚ = 0.027, BFincl = 0.111), between stimulation type and delay (F(3, 51) = 1.583,  

p = 0.196, ²ₚ = 0.031, BFincl = 0.553), between stimulation type, delay and sex  

(F(3, 51) = 0.095, p = 0.963, ²ₚ = 0.002, BFincl = 0.036), between stimulation type, delay, 

group and sex (F(3, 51) = 0.399, p = 0.754, ²ₚ = 0.008, BFincl = 1.462) and between group 

and sex (F(1, 53) = 0.776, p = 0.383, ²ₚ = 0.016, BFincl = 0.610) were observed. 

Additionally, no statistically significant effects of group (F(1, 53) = 1.559, p = 0.218,  

²ₚ = 0.031, BFincl = 0.628) and sex (F(1, 53) = 0.011, p = 0.916, ²ₚ = 2.287  10-4,  

BFincl = 0.474) were found.  

However, a statistically significant interaction between delay and gray matter volume was 

revealed (F(3, 51) = 2.835, p = 0.040, ²ₚ = 0.055,). A trend-level interaction between delay, 

group, and sex (F(3, 51) = 2.211, p = 0.089, ²ₚ = 0.043, BFincl = 0.442) was driven by 

differences in typical reading females between 500 ms and 4500 ms (t(49) = 2.166,  

p = 0.035, d = 0.269) and between 3000 ms and 4500 ms (trend-level difference:  

t(49) = 1.936, p = 0.059, d = 0.250), with a weaker glutamate response after 4500 ms. 

Additionally, for females with dyslexia, a trend-level difference was found between 500 ms 

(higher glutamate) and 3000 ms (t(49) = 1.870, p = 0.067, d = 0.237). A difference between 

delays of 1000 ms and 3000 ms (t(49) = -2.713, p = 0.009, d = -0.401), and between 

3000 ms and 4500 ms (t(49) = 2.281, p = 0.027, d = 0.308), with higher glutamate 

concentration at 3000 ms after stimulation, was observed in males diagnosed with dyslexia. 

Additionally, in this group a trend-level difference was found between delays of 500 ms 

(higher glutamate) and 1000 ms (t(49) = 1.692, p = 0.097, d = 0.222). Moreover,  

a trend-level difference was found for males 1000 ms after stimulation between the control 
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group (higher glutamate) and the dyslexia group (t(49) = 1.697, p = 0.096, d = 0.633) (see  

Figure 19).  

 

Figure 19. Difference in glutamate concentration in the medial prefrontal cortex after BOLD correction on 7 

Tesla scanner showing interaction between delay, group, and sex: (a) differences in females from the control 

group; (b) differences in females from the dyslexic group; (c) no statistically significant differences in males 

from the control group; (d) differences in males from the dyslexic group; € difference between control and 

dyslexic groups in males at 1000 ms after visual stimulation. 

Another trend-level interaction between stimulation type, delay, and group  

(F(3, 51) = 2.268, p = 0.083, ²ₚ = 0.044, BFincl = 2.401) was a result of a lower glutamate 

level 1000 ms after word and stimulation in the dyslexia group compared to 500 ms  

(t(49) = 2.750, p = 0.008, d = 0.393), 3000 ms (t(49) = -2.073, p = 0.043, d = -0.280), and 
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at a trend-level difference to 4500 ms (t(49) = -1.775, p = 0.082, d = -0.287). Additionally, 

in the typical reading group glutamate was higher 500 ms after word stimulation than after 

4500 ms (t(49) = 2.069, p = 0.044, d = 0.282). In the control group, a stronger glutamate 

response 3000 ms after stimulation with false font strings was observed compared to 

500 ms (t(49) = -2.112, p = 0.040, d = -0.211), 1000 ms (t(49) = -2.222, p = 0.031,  

d = -0.279), and 4500 ms (t(49) = 1.997, p = 0.051, d = 0.221), as a trend-level difference. 

Furthermore, 1000 ms after word stimulation, a higher glutamate concentration in the 

control group compared to the dyslexia group was found (t(49) = 2.027, p = 0.048,  

d = 0.616). In individuals with dyslexia, 1000 ms after word stimulation, glutamate levels 

were lower than after false font strings (t(49) = -2.625, p = 0.012, d = -0.408). In typical 

readers, a similar trend-level observation was found 3000 ms after stimulation, with  

a weaker glutamate response after words (t(49) = -1.876, p = 0.067, d = -0.232) (see  

Figure 20). 
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Figure 20. Trend-level interaction between stimulation type, delay, and group in the medial prefrontal cortex 

after BOLD correction on 7 Tesla scanner: (a) differences in glutamate concentration between delays in the 

control group after word stimulation; (b) differences in the dyslexic group after word stimulation;  

(c) differences in the control group after false font string stimulation; (d) no statistically significant differences 

in the dyslexic group after false font string stimulation; € differences in glutamate concentration after word 

and false font string stimulation at 3000 ms in the control group; (f) differences after word and false font 

string stimulation at 1000 ms in the dyslexic group; (g) differences between the control and dyslexic groups 

at 1000 ms after word stimulation. 
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Left superior temporal sulcus 

In the left superior temporal sulcus, the dynamic-averaged approach revealed significant 

effects of gray matter volume (F(1, 47) = 8.121, p = 0.007, ²ₚ = 0.159, BFincl = 8.558) and 

age (F(1, 47) = 5.251, p = 0.027, ²ₚ = 0.109, BFincl = 3.662). The main effect of delay was 

not statistically significant (F(3, 45) = 0.357, p = 0.784, ²ₚ = 0.008, BFincl = 0.032), also 

no statistically significant effects of stimulation type was revealed (F(1, 53) = 1.844,  

p = 0.182, ²ₚ = 0.041, BFincl = 0.613). Furthermore, no statistically significant interactions 

between stimulation type and group (F(1, 53) = 1.075, p = 0.306, ²ₚ = 0.024,  

BFincl = 0.364), between stimulation type and sex (F(1, 53) = 0.041, p = 0.841,  

²ₚ = 9.474  10-4, BFincl = 0.243), between stimulation type, group and sex  

(F(1, 53) = 0.191, p = 0.665, ²ₚ = 0.004, BFincl = 0.091), between delay and group  

(F(3, 51) = 0.820, p = 0.485, ²ₚ = 0.019, BFincl = 0.046), between delay and sex  

(F(3, 51) = 1.495, p = 0.219, ²ₚ = 0.034, BFincl = 0.151), between delay, group and sex 

(F(3, 51) = 1.312, p = 0273, ²ₚ = 0.030, BFincl = 0.414), between stimulation type and 

delay (F(3, 51) = 1.092, p = 0.355, ²ₚ = 0.025, BFincl = 0.057), between stimulation type, 

delay and group (F(3, 51) = 0.663, p = 0.576, ²ₚ = 0.015, BFincl = 0.105), between 

stimulation type, delay and sex (F(3, 51) = 1.496, p = 0.219, ²ₚ = 0.034, BFincl = 0.112), 

between stimulation type, delay, group and sex (F(3, 51) = 0.591, p = 0.622, ²ₚ = 0.014, 

BFincl = 0.133) and between group and sex (F(1, 53) = 0.079, p = 0.780, ²ₚ = 0.002,  

BFincl = 0.477) were observed. No statistically significant effects of group (F(1, 53) = 1.834, 

p = 0.183, ²ₚ = 0.041, BFincl = 0.975) and sex (F(1, 53) = 0.140, p = 0.710, ²ₚ = 0.003, 

BFincl = 0.555) were found.  

After BOLD Correction 

The broadening procedure revealed a trend-level significant four-way interaction between 

stimulation type, delay, group, and sex (F(3, 45) = 2.283, p = 0.082, ²ₚ = 0.050,  

BFincl = 0.163). Contrasts show that this interaction was due to differences between delays 

in females with dyslexia stimulated with false font strings, where glutamate levels were 

lower at 3000 ms compared to 500 ms (t(43) = 3.492, p = 0.001, d = 0.600), and 4500 ms 

(t(43) = -2.022, p = 0.049, d = -0.367), and at 1000 ms at trend-level (t(43) = 1.890,  

p = 0.065, d = 0.372). Additionally, differences between delays were observed for males 

diagnosed with dyslexia after false font strings, with lower glutamate concentration at 
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500 ms compared to 3000 ms (t(43) = -2.536, p = 0.015, d = -0.507), and higher glutamate 

concentration at 3000 ms compared to 4500 ms (t(43) = 2.914, p = 0.006, d = 0.615), along 

with a trend-level difference between 1000 ms (higher glutamate concentration) and 

4500 ms (t(43) = 1.784, p = 0.082, d = 0.353). Moreover, dyslexic females showed  

a stronger glutamate response at 3000 ms after word stimulation compared to false font 

strings (t(43) = 2.225, p = 0.031, d = 0.493). Notably, dyslexic males had a trend-level 

weaker glutamate response at 3000 ms after word stimulation compared to false font strings 

(t(43) = -1.862, p = 0.070, d = -0.480). A trend-level difference was also observed in 

individuals with dyslexia at 3000 ms after false font string stimulation, with an difference 

between females and males (t(43) = -1.770, p = 0.084, d = -0.687), with higher glutamate 

levels in males. A trend-level glutamate difference between the control and dyslexic groups 

was found in females at 3000 ms after word stimulation (t(43) = -1.922, p = 0.061,  

d = -0.796) and at 500 ms after false font strings (t(43) = -1.847, p = 0.072, d = -0.735), 

with higher glutamate concentration in individuals with dyslexia in both cases (see  

Figure 21). 
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Figure 21. Differences in glutamate concentration in the left superior temporal sulcus after BOLD correction 

on 7 Tesla scanner showing a four-way interaction between stimulation type, delay, group, and sex:  

(a) differences between delays in females from the dyslexic group after false font string stimulation;  

(b) differences between delays in males from the dyslexic group after false font string stimulation;  

(c) difference between word and false font string stimulation in females from the dyslexic group at 3000 ms; 

(d) difference between word and false font string stimulation in males from the dyslexic group at 3000 ms; 

(e) difference between control and dyslexic groups in females at 500 ms after false font string stimulation;  

(f) difference between control and dyslexic groups in females at 3000 ms after word stimulation;  
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(g) difference between females and males from the dyslexic group at 3000 ms after false font string 

stimulation. 

Age (F(1, 47) = 6.420, p = 0.015, ²ₚ = 0.130, BFincl = 5.315) and gray matter volume  

(F(1, 47) = 7.939, p = 0.007, ²ₚ = 0.156, BFincl = 9.769) were statistically significant in the 

dynamic-averaged approach for the left superior temporal sulcus.  

Analysis did not reveal a significant main effect of delay (F(3, 45) = 0.107, p = 0.956,  

²ₚ = 0.002, BFincl = 0.028) or stimulation type (F(1, 53) = 0.193, p = 0.662, ²ₚ = 0.004, 

BFincl = 0.442). Moreover, no statistically significant interactions between stimulation type 

and group (F(1, 53) = 1.594, p = 0.214, ²ₚ = 0.036, BFincl = 0.351), between stimulation 

type and sex (F(1, 53) = 0.060, p = 0.807, ²ₚ = 0.001, BFincl = 0.258), between stimulation 

type, group and sex (F(1, 53) = 1.077, p = 0.305, ²ₚ = 0.024, BFincl = 0.351), between delay 

and group (F(3, 51) = 0.687, p = 0.562, ²ₚ = 0.016, BFincl = 0.049), between delay and sex 

(F(3, 51) = 1.071, p = 0.364, ²ₚ = 0.024, BFincl = 0.026), between delay, group and sex 

(F(3, 51) = 0.973, p = 0.408, ²ₚ = 0.022, BFincl = 0.050), between stimulation type and 

delay (F(3, 51) = 0.242, p = 0.867, ²ₚ = 0.006, BFincl = 0.210), between stimulation type, 

delay and group (F(3, 51) = 0.208, p = 0.891, ²ₚ = 0.005, BFincl = 0.678), between 

stimulation type, delay and sex (F(3, 51) = 1.727, p = 0.165, ²ₚ = 0.039, BFincl = 0.569) 

and between group and sex (F(1, 53) = 0.349, p = 0.558 ²ₚ = 0.008, BFincl = 0.546) were 

observed. In addition, no statistically significant effects of group (F(1, 53) = 1.857,  

p = 0.180, ²ₚ = 0.041, BFincl =0.929) and sex (F(1, 53) = 0.051, p = 0.822, ²ₚ = 0.001, 

BFincl = 0.395) were found.  
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3.2.  Experiment 2 – fMRS on 3T scanner 

3.2.1. Behavioral results 

Functional magnetic resonance spectroscopy (fMRS) was performed on a 3 Tesla scanner, 

involving 40 participants—21 diagnosed with dyslexia and 19 typical readers. The 

participants were matched for sex, age, and family socio-economic status, as indicated by 

the years of education of their parents. 

Volunteers diagnosed with dyslexia scored higher on the Polish version of the Adult 

Reading History Questionnaire (ARHQ-PL), suggesting an increased risk for dyslexia. 

Participants with dyslexia exhibited lower scores in intelligence quotients (IQ), although 

both groups remained within the normal intellectual range. A trend-level difference in 

nonverbal IQ was observed, with typical readers showing higher scores. No significant 

effects of sex or interactions between sex and group were found (see Table 6). 

Reading ability differed between participants from the control and dyslexic groups. 

Reading speed for both words and pseudowords was significantly higher in the control 

group. Typical readers also performed better in phonological awareness tasks. 

Interestingly, while the dyslexic group generally responded slower in rapid automatized 

naming tasks, statistically significant group differences were found for colors and letters, 

whereas only a trend-level difference was observed for objects and digits. Moreover,  

a statistically significant difference between sexes was found in rapid automatized naming 

of colors, with female participants responding faster, although this effect was no longer 

significant after correction for multiple comparisons. No other sex differences or 

interactions between sex and group were observed (see Table 7).
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Table 6. Descriptive Statistics for Demographic Characteristics Separately for Females and Males in Dyslexic and Control Groups. For all Comparisons, F Statistics, P-

Values (in Brackets), and the Partial Eta Squared (2
p) are Provided  

 DYS F 

(n = 9) 

CON F 

(n = 11) 

DYS M 

(n = 12) 

CON M 

(n = 8) 

 

group 

F(1,38) 

 

2
p 

 

 

sex 

F(1,38) 

 

2
p 

 

 

group*sex 

F(1, 38) 

 

2
p 

 
 M SD M SD M SD M SD 

Age 22.653 2.771 21.907 3.359 20.641 3.675 21.826 2.431 0.047 

(0.830) 

0.001 1.056 

(0.311) 

0.028 0.899 

(0.349) 

0.024 

Mother’s 

education 

(years) 

15.444 2.963 15.727 2.494 17.542 3.986 16.875 2.232 0.038 

(0.847) 

0.001 2.701 

(0.109) 

0.070 0.231 

(0.634) 

0.006 

Father’s 

education 

(years) 

15.222 3.866 16.818 4.262 17.333 2.309 17.000 3.854 0.302 

(0.586) 

0.008 0.994 

(0.325) 

0.027 0.704 

(0.407) 

0.019 

IQ 105.000 14.782 112.545 7.866 103.917 13.201 116.750 8.225 7.659  

(0.009) 

0.175 0.180 

(0.674) 

0.005 0.516 

(0.477) 

0.014 

Nonverbal IQ 

(scaled score) 

10.667 3.240 11.909 2.468 10.167 3.486 12.500 2.138 3.612 

(0.065) 

0.091 0.002 

(0.962) 

6.484×

10-5 

0.336 

(0.566) 

0.009 

ARHQ-PL 50.667 10.488 24.000 5.079 48.083 11.389 23.375 7.425 78.471 

(< .001) 

0.686 0.306 

(0.584) 

0.008 0.114 

(0.738) 

0.003 

Note. CON – control group; DYS – dyslexic group; F – females; M – males; ARHQ-PL – Polish version of the Adult Reading History Questionnaire.  

Boldface indicates statistical significance at p < .05 level. 
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Table 7. Behavioral results from reading and reading-related tasks. For all comparisons, F-statistics, p-values (in brackets), and the partial eta squared (2
p) are provided.  

 DYS F 

(n = 9) 

CON F 

(n = 11) 

DYS M 

(n = 12) 

CON M 

(n = 8) 

 

group 

F(1,38) 

 

2
p 

 

 

sex 

F(1,38) 

 

2
p 

 

 

group*sex 

F(1,38) 

 

2
p 

 
 M SD M SD M SD M SD 

words/min 115.889 17.808 137.364 10.726 113.667 17.541 130.625 12.872 15.742  

(< .001)* 

0.304 0.856 

(0.361) 

0.023 0.217 

(0.644) 

0.006 

pseudowords/min 59.667 15.116 84.727 15.193 60.833 15.724 87.500 19.086 24.957  

(< .001)* 

0.409 0.145 

(0.706) 

0.004 0.024 

(0.878) 

6.678×

10-4 

reading 

comprehension 

(sec)  

58.333 9.695 41.636 6.577 61.917 18.158 46.750 10.430 15.983  

(< .001)* 

0.307 1.191 

(0.282) 

0.032 0.037 

(0.849) 

0.001 

RAN objects 

(sec) 

31.333 5.852 28.818 5.828 33.667 6.679 29.875 2.997 2.990 

(0.092) 

0.077 0.864 

(0.359) 

0.023 0.122 

(0.728) 

0.003 

RAN colors  

(sec) 

33.556 5.659 28.818 3.545 37.917 6.960 31.250 2.659 11.832 

(0.001)* 

0.247 4.198 

(0.048) 

0.104 0.339 

(0.564) 

0.009 

RAN digits 

(sec) 

18.889 2.759 17.182 3.157 20.000 6.281 16.625 2.825 3.484  

(0.070) 

0.088 0.041 

(0.840) 

0.001 0.375 

(0.544) 

0.010 

RAN letters 

(sec) 

22.444 4.503 18.818 1.168 23.250 4.827 20.750 2.375 6.982  

(0.012) 

0.162 1.394 

(0.245) 

0.037 0.236 

(0.630) 

0.007 

phoneme deletion 

(% correct) 

77.777 29.214 94.055 5.796 75.641 30.741 97.115 3.409 7.088  

(0.012) 

0.165 0.004 

(0.948) 

1.179

×10-4 

0.134 

(0.716) 

0.004 

spoonerisms 

phonemes  

(% correct) 

73.809 29.014 88.312 13.277 45.833 38.939 88.391 9.304 11.079 

(0.002)* 

0.235 2.648 

(0.112) 

0.069 2.678 

(0.110) 

0.069 
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spoonerisms 

syllables 

(% correct) 

59.259 30.174 71.212 27.978 41.666 30.567 81.248 13.908 8.712  

(0.006) 

0.195 0.187 

(0.668) 

0.005 2.504 

(0.122) 

0.065 

orthographic 

awareness 

(accuracy/time) 

0.377 0.125 0.622 0.112 0.350 0.131 0.589 0.119 38.251  

(< .001)* 

0.515 0.583 

(0.450) 

0.016 0.007 

(0.935) 

1.859×

10-4 

Note. CON – control group; DYS – dyslexic group; F – females; M – males; RAN – rapid automatized naming. Boldface indicates statistical significance at p < .05 level.  

* Significance after Bonferroni correction for 11 planned comparisons for reading-related tasks; threshold for statistical significance after correction was set at  

p = 0.00455; 
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3.2.2. Task During fMRS Scanning 

The tasks during the fMRS scan on the 3T scanner were exactly the same as those on the 

7T scanner. Participants were instructed to press the response pad whenever a target word 

appeared on the screen. The percentage of correct responses was determined by comparing 

the number of correct clicks to the total number of target words presented during the 

scanning task. 

Consistent with the 7T scanner task, only scans with spectra recognized as good quality 

were included in the analysis. 

A similar number of total responses (clicks on the pad) was observed for both analyzed 

regions, with the mean number for the medial prefrontal cortex: 107.289 (SD = 11.680, 

Min = 74, Max = 138), and for the left superior temporal sulcus: 104.543 (SD = 13.267, 

Min = 61, Max = 141). 

The medial prefrontal cortex was scanned first 15 times, second 16 times, and third 7 times. 

The left superior temporal sulcus was scanned at the beginning of the fMRS session on the 

3T scanner 22 times, and as the second region 13 times. 

Univariate ANOVA on percentage accuracy revealed a statistically significant difference 

between groups in both brain regions, with typical readers showing better accuracy than 

readers with dyslexia. Moreover, a statistically significant interaction was found between 

group and sex in the medial prefrontal cortex (see Table 8), driven by higher accuracy in 

typical reading males compared to those diagnosed with dyslexia (t(34) = 3.010, p = 0.005, 

d = 1.455), and a difference between females and males in the dyslexic group, with females 

showing higher accuracy than males (t(34) = 2.317, p = 0.027, d = 1.042). For the brain 

region involved in reading (STS), a trend-level interaction between group and sex was 

observed (see Table 3), driven by a group difference among males, with the control males 

group showing better scores than dyslexic males (t(31) = 2.702, p = 0.011, d = 1.307). 

Additionally, a difference in accuracy between females (better accuracy) and males in the 

dyslexic group was found (t(31) = 2.291, p = 0.029, d = 1.108).
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Table 8. Behavioral results from the task performed during the scan for data that meet the quality criteria. For all comparisons, F-statistics, p-values (in brackets), and the 

partial eta squared (2
p) are provided.  

Target recognition 

(% correct) 

DYS F 

 

CON F 

 

DYS M 

 

CON M 

 

 

group 

F(1,36) 

F(1,33) 

 

2
p 

 

 

sex 

F(1,36) 

F(1,33) 

 

2
p 

 

 

group*sex 

F(1,36) 

F(1,33) 

 

2
p 

 
 M SD M SD M SD M SD 

Medial prefrontal 

cortex 

 

71.154 5.065 71.678 4.351 63.549 11.843 74.176 1.612 5.353 

(0.027) 

0.136 1.123 

(0.297) 

0.032 4.393 

(0.044) 

0.114 

Left superior 

temporal sulcus 

 

70.467 3.409 71.635 4.824 59.003 17.331 72.527 2.535 4.227 

(0.048) 

0.120 2.188 

(0.149) 

0.066 2.990 

(0.094) 

0.088 
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3.2.3. fMRS Results  

3.2.3.1. Quality Assessment  

To ensure the quality of the data in the packages was sufficient for analysis, the  

signal-to-noise ratio (SNR) and the percentage of Cramer-Rao lower bound (%CRLB) for 

two metabolites, glutamate and NAA, were reported by the FSL-MRS software. 

Additionally, the full width at half maximum (FWHM) was checked, although only for 

NAA due to software issues in accurately assessing FWHM for glutamate. All packages 

met the quality criteria: %CRLB for glutamate should be less than 20% (the maximum 

%CRLB for glutamate in the package with signals acquired 4500 ms after word stimulation 

was 13.610 in the medial prefrontal cortex, and in the left superior temporal sulcus for the 

same type of signals, words 4500 ms, it was 13.622). Data quality details can be found in 

Table 9 and Table 10 for FWHM. 

Table 9. Quality parameters of the data, grouped based on stimulation type and delay for 3 Tesla scanner.  

Packages type 
Max # 

signals 

Glutamate NAA 

Mean SD Min Max Mean SD Min Max 

Signal-to-noise ratio (SNR) in mPFC (38 participants) 

Words 78 10.398 2.664 5.285 16.768 33.212 9.186 15.573 52.119 

Bacs 78 10.361 2.550 5.408 15.271 33.020 9.029 15.752 51.069 

Rest 78 10.201 2.488 5.125 15.381 32.492 8.767 16.090 52.260 

words 500 ms 26 6.038 1.621 2.503 9.970 18.985 5.165 8.846 29.681 

words 1000 ms 26 5.991 1.523 2.938 9.344 19.454 5.363 9.296 30.647 

words 3000 ms 26 5.985 1.427 3.039 9.235 19.049 5.050 9.206 29.374 

words 4500 ms 26 6.001 1.407 3.051 8.803 18.915 5.038 9.159 28.781 

bacs 500 ms 26 6.049 1.535 3.211 9.105 19.261 5.340 8.970 31.802 

bacs 1000 ms 26 6.090 1.539 2.671 9.147 19.292 5.323 8.457 30.816 

bacs 3000 ms 26 5.903 1.464 3.222 8.827 19.016 5.117 9.667 28.175 

bacs 4500 ms 26 5.966 1.462 3.055 9.985 18.916 5.095 9.065 30.062 

Signal-to-noise ratio (SNR) is STS (35 participants) 

Words 78 10.288 2.625 5.533 15.234 39.584 7.553 20.875 57.415 

Bacs 78 10.094 2.566 4.872 14.735 39.217 7.153 21.750 56.474 

Rest 78 10.068 2.538 5.096 14.443 39.304 6.698 21.954 53.302 

words 500 ms 26 5.933 1.457 3.183 9.298 22.893 4.069 12.164 32.147 

words 1000 ms 26 5.826 1.494 2.724 8.739 22.527 4.251 11.816 32.462 

words 3000 ms 26 5.930 1.477 3.280 8.318 22.817 4.100 12.634 33.678 

words 4500 ms 26 5.874 1.450 2.683 8.520 22.768 4.216 12.102 34.172 
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bacs 500 ms 26 5.815 1.534 2.983 8.890 22.561 4.106 12.846 33.567 

bacs 1000 ms 26 5.829 1.558 2.657 8.924 22.578 4.086 11.947 31.609 

bacs 3000 ms 26 5.855 1.501 2.763 8.554 22.694 4.240 12.450 34.598 

bacs 4500 26 5.840 1.385 3.463 8.873 22.633 3.790 13.479 31.413 

%CRLB in mPFC (38 participants) 

Words 78 3.829 0.875 2.783 7.313 2.629 0.694 1.583 4.994 

Bacs 78 3.813 0.780 2.649 5.866 2.679 0.692 1.484 4.713 

Rest 78 3.849 0.855 2.813 6.712 2.694 0.769 1.451 5.119 

words 500 ms 26 5.920 1.958 3.569 14.282 4.199 1.378 2.050 8.249 

words 1000 ms 26 5.803 1.531 3.821 10.557 3.903 1.357 2.222 8.053 

words 3000 ms 26 5.784 1.557 3.878 11.204 4.000 1.133 2.311 8.011 

words 4500 ms 26 5.772 1.752 3.846 13.610 3.973 1.209 2.249 8.453 

bacs 500 ms 26 5.759 1.408 3.668 9.000 3.970 1.085 2.107 6.725 

bacs 1000 ms 26 5.720 1.598 3.811 10.628 3.955 1.405 2.035 8.341 

bacs 3000 ms 26 5.851 1.376 3.927 9.169 4.008 1.217 2.051 6.186 

bacs 4500 ms 26 5.808 1.544 3.696 10.705 3.949 1.141 2.204 6.790 

%CRLB in STS (35 participants) 

Words 78 4.798 1.504 3.100 9.791 2.443 0.701 1.457 4.085 

Bacs 78 4.899 1.583 3.150 9.037 2.463 0.672 1.573 3.858 

Rest 78 4.850 1.502 3.234 8.815 2.473 0.663 1.579 3.959 

words 500 ms 26 6.665 1.851 4.128 11.649 3.443 0.769 1.861 5.211 

words 1000 ms 26 6.823 2.086 4.673 13.281 3.573 0.931 2.248 6.596 

words 3000 ms 26 6.634 1.998 4.289 12.696 3.336 0.920 1.988 5.980 

words 4500 ms 26 6.710 2.128 4.502 13.622 3.382 0.811 1.973 5.135 

bacs 500 ms 26 6.854 2.150 4.114 13.215 3.438 0.899 2.062 6.384 

bacs 1000 ms 26 6.774 2.163 4.414 13.267 3.367 0.929 2.273 6.245 

bacs 3000 ms 26 6.804 2.223 4.369 12.611 3.407 0.897 2.037 6.140 

bacs 4500 ms 26 6.631 1.692 4.314 10.729 3.398 0.693 2.019 4.969 
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Table 10. Full width at half maximum for NAA of the data, grouped based on stimulation type and delay 

for 3 Tesla scanner.  

Packages type 
Max # 

signals 

mPFC (38 participants) STS (35 participants) 

Mean SD Min Max Mean SD Min Max 

FWHM for NAA 

Words  78 4.761 0.702 3.703 7.023 5.510 0.965 4.381 8.555 

Bacs  78 4.791 0.675 3.702 7.050 5.551 1.043 4.297 8.707 

Rest 78 4.776 0.684 3.600 6.933 5.508 0.938 4.261 8.264 

words 500 ms 26 4.777 0.714 3.709 7.245 5.513 0.960 4.399 8.562 

words 1000 ms 26 4.739 0.670 3.583 6.533 5.546 1.010 4.281 8.641 

words 3000 ms 26 4.765 0.737 3.554 7.218 5.492 0.937 4.423 8.483 

words 4500 ms 26 4.778 0.705 3.663 6.633 5.522 0.989 4.185 8.759 

bacs 500 ms 26 4.812 0.705 3.651 6.900 5.535 1.063 4.337 8.734 

bacs 1000 ms 26 4.742 0.701 3.791 7.247 5.570 0.970 4.289 8.564 

bacs 3000 ms 26 4.791 0.648 3.602 6.256 5.535 1.095 4.219 8.815 

bacs 4500 ms 26 4.774 0.726 3.694 7.260 5.543 0.936 4.441 8.879 
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3.2.3.2. Data Exclusion Due to BOLD Correction Issues 

Due to technical issues, the apodization procedure, which is used to broaden spectra peaks 

in order to reduce potential influences of the BOLD effect on spectra shape, was not 

properly applied to some data packages. As a result, one spectrum from the medial 

prefrontal cortex was omitted from the analysis for both stimulation type and delay-based 

grouping, as well as for the dynamic-averaged approach, since the same data packages were 

used in both analyses. In the left superior temporal sulcus, data from two participants were 

excluded from the stimulation type analysis, and data from three participants were omitted 

from the analysis of delays between stimulation and data acquisition for both the traditional 

and dynamic-averaged approaches.  

Finally, analysis was conducted on data from 37 participants for the medial prefrontal 

cortex: 18 participants from the control group (11 females, 7 males) and 19 from the 

dyslexic group (9 females, 10 males). For the left superior temporal sulcus, 33 participants' 

data were used for analysis grouped by stimulation type: 17 participants from the control 

group (10 females, 7 males) and 16 from the dyslexic group (6 females, 10 males). 

Additionally, 32 participants' data were analyzed based on delays and using the  

dynamic-averaged approach: 17 participants from the control group (10 females, 7 males) 

and 15 from the dyslexic group (5 females, 10 males). 

3.2.3.3. Data grouped by stimulation type 

Medial prefrontal cortex 

The analyzed data from the medial prefrontal cortex had the following quality parameters: 

signal-to-noise ratio for Glu (M = 10.32, SD = 2.57) and NAA (M = 32.91, SD = 8.99), 

%CRLB for Glu (M = 3.83, SD = 0.84) and NAA (M = 2.67, SD = 0.72), and FWHM for 

NAA (M = 4.78, SD = 0.69).  

In the medial prefrontal cortex, repeated measures ANOVA analysis did not reveal  

a statistically significant main effect of stimulation (F(2, 35) = 0.243, p = 0.785, ²ₚ = 0.008, 

BFincl = 0.213). No statistically significant effects were observed for the interaction between 

stimulation and group (F(2, 35) = 0.394, p = 0.676, ²ₚ = 0.012, BFincl = 0.232), between 

stimulation and sex (F(2, 35) = 1.073, p = 0.348, ²ₚ = 0.032, BFincl = 0.319), between 

stimulation, group, and sex (F(2, 35) = 0.562, p = 0.573, ²ₚ = 0.017, BFincl = 0.350) or 
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between group and sex (F(1, 36) = 0.288, p = 0.595, ²ₚ = 0.009, BFincl = 0.526). 

Furthermore, no significant effects of group (F(1, 36) = 0.050, p = 0.825, ²ₚ = 0.002,  

BFincl = 0.375) or sex (F(1, 36) = 1.281, p = 0.266, ²ₚ = 0.039, BFincl = 0.746) were found. 

A trend-level effect of age was found (F(1, 36) = 4.020, p = 0.053, ²ₚ = 0.112,  

BFincl = 2.542). 

After BOLD correction 

The same data following the apodization procedure showed only a trend-level effect of 

participants' age (F(1, 35) = 3.617, p = 0.067, ²ₚ = 0.104, BFincl = 2.189). The effect of 

stimulation type was not statistically significant (F(2, 34) = 0.800, p = 0.454, ²ₚ = 0.025, 

BFincl = 0.169). No statistically significant effects were observed for the interaction between 

stimulation and group (F(2, 34) = 0.317, p = 0.729, ²ₚ = 0.010, BFincl = 0.205), between 

stimulation and sex (F(2, 34) = 0.420, p = 0.659, ²ₚ = 0.013, BFincl = 0.222), between 

stimulation, group, and sex (F(2, 34) = 1.253, p = 0.293, ²ₚ = 0.039, BFincl = 0.639) or 

between group and sex (F(1, 35) = 0.318, p = 0.577, ²ₚ = 0.010, BFincl = 0.516). No 

significant effects of group (F(1, 35) = 0.057, p = 0.814, ²ₚ = 0.002, BFincl = 0.348) or sex 

(F(1, 35) = 1.427, p = 0.241, ²ₚ = 0.044, BFincl = 0.751) were observed. 

Left superior temporal sulcus 

The analyzed data from the left superior temporal sulcus had the following quality 

parameters: signal-to-noise ratio for Glu (M = 10.15, SD = 2.58) and NAA (M = 39.37,  

SD = 7.13), %CRLB for Glu (M = 4.85, SD = 1.53) and NAA (M = 2.46, SD = 0.68), and 

FWHM for NAA (M = 5.52, SD = 0.98).  

In the superior temporal sulcus, no statistically significant effect of stimulation type was 

observed (F(2, 32) = 1.624, p = 0.206, ²ₚ = 0.053, BFincl = 0.810). No statistically 

significant effects were observed for the interaction between stimulation and group  

(F(2, 32) = 0.023, p = 0.978, ²ₚ = 7.762  10-4, BFincl = 0.169), between stimulation and 

sex (F(2, 32) = 1.775, p = 0.179, ²ₚ = 0.058, BFincl = 0.793), between stimulation, group, 

and sex (F(2, 32) = 0.049, p = 0.952, ²ₚ = 0.002, BFincl = 0.235) or between group and sex 

(F(1, 33) = 0.534, p = 0.471, ²ₚ = 0.018, BFincl = 0.831). No significant effects of group 



 105 

(F(1, 33) = 1.372, p = 0.251, ²ₚ = 0.045, BFincl = 0.756) or sex (F(1, 33) = 0.160, p = 0.692, 

²ₚ = 0.006, BFincl = 0.754) were revealed.  

However, it was found that gray matter volume within the analyzed voxel had a statistically 

significant effect on glutamate concentration (F(1, 33) = 7.801, p = 0.009, ²ₚ = 0.212, 

BFincl = 3.600). 

After BOLD correction 

The statistically significant effect of stimulation (F(2, 30) = 5.382, p = 0.007, ²ₚ = 0.166, 

BFincl = 0.806) was observed, driven by the difference in glutamate concentration between 

words (higher glutamate concentration) and the rest (t(27) = 2.743, p = 0.011, d = 0.219) 

(see Figure 22). Additionally, a statistically significant interaction was observed between 

stimulation and sex (F(2, 30) = 3.216, p = 0.048, ²ₚ = 0.106, BFincl = 1.602), caused by 

changes in glutamate levels in females between false font strings and words (t(27) = -2.322, 

p = 0.028, d = -0.360) and between words and the rest (t(27) = 3.515, p = 0.002, d = 0.423), 

with higher glutamate levels following word stimulation. A trend-level difference between 

females and males was also observed for false font strings (t(27) = -2.033, p = 0.052,  

d = -0.733) and the rest (t(27) = -1.882, p = 0.071, d = -0.725) (see Figure 23). Furthermore, 

a statistically significant effect of group was identified (F(1, 31) = 4.784, p = 0.038,  

²ₚ = 0.151, BFincl = 1.036), with higher glutamate concentrations in the control group than 

in the dyslexia group (see Figure 24). Moreover, gray matter volume had a statistically 

significant influence on glutamate levels (F(1, 31) = 6.363, p = 0.018, ²ₚ = 0.191,  

BFincl = 3.151). In addition, a trend-level interaction appeared between group and sex  

(F(1, 31) = 3.471, p = 0.073, ²ₚ = 0.114, BFincl = 1.301), determined by differences between 

females in the typical reading and dyslexic groups, with weaker glutamate responses in the 

dyslexic group (t(27) = 2.814, p = 0.009, d = 1.437), and a difference between females and 

males in the dyslexic group (t(27) = -2.322, p = 0.028, d = -1.250), with higher glutamate 

concentrations in males (see Figure 25).  
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Figure 22. Glutamate concentration changes in response to visual stimulation after BOLD correction in left 

superior temporal sulcus observed on 3 Tesla scanner. 

 

Figure 23. Statistically significant interaction between stimulation and sex on 3 Tesla scanner: a) glutamate 

concentration changes in response to visual stimulation in females; b) no glutamate concentration changes in 

response to visual stimulation in males; c) difference between females and males after false font string 

stimulation (bacs font); d) difference between females and males during rest. 
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Figure 24. Difference in glutamate concentration between the control and dyslexic groups after BOLD 

correction in the left superior temporal sulcus observed on a 3 Tesla scanner. 

 

Figure 25. a) Difference in glutamate concentration between the control and dyslexic groups in females;  

b) no differences between the control and dyslexic groups in males. Males had higher glutamate concentration 

than females in the dyslexic (d) but not the control group (c) on 3 Tesla scanner. 

No statistically significant effects were observed for the interaction between stimulation 

and group (F(2, 30) = 0.165, p = 0.849, ²ₚ = 0.006, BFincl = 0.242) or between stimulation, 

group, and sex (F(2, 30) = 0.008, p = 0.992, ²ₚ = 3.079  10-4, BFincl = 0.223). No significant 

effect of sex (F(1, 31) = 2.638, p = 0.116, ²ₚ = 0.089, BFincl = 0.974) was found. 
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3.2.3.4. Data grouped by delay 

Medial prefrontal cortex 

The analyzed data from the medial prefrontal cortex had the following quality parameters: 

signal-to-noise ratio for Glu (M = 6.00, SD = 1.50) and NAA (M = 19.11, SD = 5.19), 

%CRLB for Glu (M = 5.80, SD = 1.59) and NAA (M = 3.99, SD = 1.24), and FWHM for 

NAA (M = 4.77, SD = 0.70).  

Analysis taking into account different time delays between stimulation onset and signal 

acquisition in the medial prefrontal cortex discovered a statistically significant three-way 

interaction between stimulation type, group, and sex (F(1, 36) = 5.263, p = 0.028,  

²ₚ = 0.141, BFincl = 1.223), determined by difference in typical reading females between 

stimulation with words and false font strings (t(32) = -2.145, p = 0.040, d = -0.332), with 

higher glutamate levels after false font string stimulation (see Figure 26). Moreover, the 

interaction between stimulation type and delay was significant (F(3, 34) = 4.038, p = 0.009, 

²ₚ = 0.112, BFincl = 0.134), caused by a trend-level difference between 500 ms and  

3000 ms (t(32) = 2.029, p = 0.051, d = 0.408), and between 3000 ms and 4500 ms  

(t(32) = -1.716, p = 0.096, d = -0.353) after false font string stimulation, with weaker 

glutamate response after 3000 ms (see Figure 27). A statistically significant interaction 

between stimulation type, delay, and age (F(3, 34) = 3.184, p = 0.027, ²ₚ = 0.090), as well 

as an interaction between stimulation type, delay, and gray matter volume (F(3, 34) = 3.173, 

p = 0.028, ²ₚ = 0.090), was observed. Additionally, a trend-level effect of delay was 

reported (F(3, 34) =2.325, p = 0.080, ²ₚ = 0.068, BFincl = 0.043), driven by higher 

glutamate concentration 4500 ms after stimulation compared to 1000 ms (t(32) = -1.756,  

p = 0.089, d = -0.223) and 3000 ms (t(32) = -1.941, p = 0.061, d = -0.236) (see Figure 28). 

A trend-level interaction was also observed between delay and age (F(3, 34) = 2.263,  

p = 0.086, ²ₚ = 0.066). A statistically significant effect of age (F(1, 36) = 4.401, p = 0.044, 

²ₚ = 0.121, BFincl = 5.792) was revealed.  
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Figure 26. Difference in glutamate concentration on 3 Tesla scanner in females from the control group 

between stimulation with words and false font strings (written in bacs font). 

 

Figure 27. Glutamate concentration differences on 3 Tesla scanner between time delays after false font string 

stimulation.  

 

Figure 28. Glutamate concentration differences at different time delays after stimulation on 3 Tesla scanner. 

No statistically significant effects of stimulation type was found (F(1, 36) = 1.062,  

p = 0.310, ²ₚ = 0.032, BFincl = 0.095) was found. Furthermore no statistically significant 

interactions between stimulation type and group (F(1, 36) = 0.110, p = 0.742, ²ₚ = 0.003, 

BFincl = 0.247), between stimulation type and sex (F(1, 36) = 1.603, p = 0.215, ²ₚ = 0.048, 

BFincl = 0.276), between delay and group (F(3, 34) = 0.541, p = 0.655, ²ₚ = 0.017,  
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BFincl = 0.067), between delay and sex (F(3, 34) = 0.426, p = 0.735, ²ₚ = 0.013,  

BFincl =0.083), between delay, group and sex (F(3, 34) = 0.673, p = 0.571, ²ₚ = 0.021, 

BFincl = 0.199), between stimulation type, delay and group (F(3, 34) = 0.638, p = 0.592,  

²ₚ = 0.020, BFincl = 0.136), between stimulation type, delay and sex (F(3, 34) = 0.304,  

p = 0.822, ²ₚ = 0.009, BFincl = 0.166), between stimulation type, delay, group and sex  

(F(3, 34) = 0.615, p = 0.607, ²ₚ = 0.019, BFincl = 0.156) and between group and sex  

(F(1, 36) = 0.260, p = 0.614, ²ₚ = 0.008, BFincl = 0.390) were observed. Moreover, no 

statistically significant effects of group (F(1, 36) = 0.207, p = 0.652, ²ₚ = 0.006,  

BFincl = 0.220) and sex (F(1, 36) = 2.052, p = 0.162, ²ₚ = 0.060, BFincl = 1.828) were found.  

After BOLD correction 

After BOLD correction, the interaction between stimulation type, group, and sex  

(F(1, 35) = 4.679, p = 0.038, ²ₚ = 0.131, BFincl = 1.242) remained statistically significant. 

Contrasts showed that this was the result of a trend-level glutamate concentration difference 

between females and males (higher glutamate) in the dyslexic group after stimulation with 

false font strings (t(31) = -1.987, p = 0.056, d = -0.658) (see Figure 29). Moreover, the 

interaction between stimulation type and delay also remained statistically significant  

(F(3, 33) = 3.234, p = 0.026, ²ₚ = 0.094, BFincl = 0.189), induced by a trend-level lower 

glutamate concentration 1000 ms after words stimulation compared to 3000 ms  

(t(31) = -1.799, p = 0.082, d = -0.308) and 4500 ms (t(31) = -1.937, p = 0.062, d = -0.348) 

(see Figure 30). A trend-level interaction between stimulation type, delay, and age  

(F(3, 33) = 2.542, p = 0.061, ²ₚ = 0.076), as well as between stimulation type, delay, and 

gray matter volume (F(3, 33) = 2.231, p = 0.090, ²ₚ = 0.067), was observed. A statistically 

significant effect of participants’ age was observed (F(1, 35) = 4.332, p = 0.046,  

²ₚ = 0.123, BFincl = 2.551).  
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Figure 29. Difference in glutamate concentration between the control and dyslexic groups in the medial 

prefrontal cortex observed on a 3 Tesla scanner for data grouped by delay.  

 

Figure 30. Difference in glutamate concentration at different time delays after word stimulation in the medial 

prefrontal cortex observed on a 3 Tesla scanner for data grouped by delay. 

No statistically significant effects of delay (F(3, 33) = 0.902, p = 0.443, ²ₚ = 0.028,  

BFincl = 0.029) and stimulation type (F(1, 35) = 0.175, p = 0.679, ²ₚ = 0.006,  

BFincl = 0.167) were revealed. Furthermore, no statistically significant interactions between 

stimulation type and group (F(1, 35) = 0.002, p = 0.967, ²ₚ = 5.542  10-5, BFincl = 0.215), 

between stimulation type and sex (F(1, 35) = 0.222, p = 0.641, ²ₚ = 0.007, BFincl = 0.505), 

between delay and group (F(3, 33) = 0.905, p = 0.442, ²ₚ = 0.028, BFincl = 0.122), between 

delay and sex (F(3, 33) = 0.396, p = 0.756, ²ₚ = 0.013, BFincl = 0.083), between delay, 

group and sex (F(3, 33) = 1.336, p = 0.267, ²ₚ = 0.041, BFincl = 0.308), between stimulation 

type, delay and group (F(3, 33) = 0.470, p = 0.704, ²ₚ = 0.015, BFincl = 0.060), between 

stimulation type, delay and sex (F(3, 33) = 0.422, p = 0.738, ²ₚ = 0.013, BFincl = 0.202), 

between stimulation type, delay, group and sex (F(3, 33) = 0.892, p = 0.449, ²ₚ = 0.028, 

BFincl = 0.258) and between group and sex (F(1, 35) = 0.182, p = 0.673, ²ₚ = 0.006,  

BFincl =0.371) were observed. Additionally, no statistically significant effects of group 
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(F(1, 35) = 0.245, p = 0.624, ²ₚ = 0.008, BFincl = 0.352) and sex (F(1, 35) = 2.264,  

p = 0.143, ²ₚ = 0.068, BFincl = 0.873) were found.  

Left superior temporal sulcus 

Analysis conducted for the left superior temporal sulcus showed a trend-level statistically 

significant three-way interaction between stimulation type, delay, and sex  

(F(3, 31) = 2.176, p = 0.097, ²ₚ = 0.070, BFincl = 1.051), with contrasts suggesting  

a trend-level difference between words and false font strings 500 ms after stimulation in 

females (t(29) = 2.015, p = 0.053, d = 0.317), and between words and false font strings 

1000 ms after stimulation in males (t(29) = -1.802, p = 0.082, d = -0.315). A trend-level 

difference in males after false font string stimulation was also observed between 1000 ms 

and 3000 ms (t(29) = 1.785, p = 0.085, d = 0.334) (see Figure 31). Gray matter volume 

inside the analyzed voxel was statistically significant (F(1, 33) = 8.541, p = 0.007,  

²ₚ = 0.228, BFincl = 6.243).  

 

Figure 31. Trend-level interaction between stimulation type, delay, and sex: a) glutamate concentration 

differences in females after 500 ms of stimulation; b) glutamate concentration differences in males after 1000 
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ms of stimulation; c) glutamate concentration differences between delays in males after false font string 

stimulation on 3 Tesla scanner. 

No statistically significant effects of delay (F(3, 31) = 1.047, p = 0.376, ²ₚ = 0.035,  

BFincl = 0.026) and stimulation type (F(1, 33) = 1.249, p = 0.273, ²ₚ = 0.041,  

BFincl = 0.196) were observed. No statistically significant interactions between stimulation 

type and group (F(1, 33) = 0.098, p = 0.757, ²ₚ = 0.003, BFincl = 0.155), between 

stimulation type and sex (F(1, 33) = 1.456, p = 0.237, ²ₚ = 0.048, BFincl = 0.292), between 

stimulation type, group and sex (F(1, 33) = 2.313  10-4, p = 0.988, ²ₚ = 7.976  10-6,  

BFincl = 0.358), between delay and group (F(3, 31) = 0.743, p = 0.530, ²ₚ = 0.025,  

BFincl = 0.089), between delay and sex (F(3, 31) = 0.474, p = 0.701, ²ₚ = 0.016,  

BFincl = 0.072), between delay, group and sex (F(3, 31) = 0.535, p = 0.660, ²ₚ = 0.018, 

BFincl = 0.063), between stimulation type and delay (F(3, 31) = 0.470, p = 0.704,  

²ₚ = 0.016, BFincl = 0.060), between stimulation type, delay and group (F(3, 31) = 0.218, 

p = 0.884, ²ₚ = 0.007, BFincl = 0.018), between stimulation type, delay, group and sex  

(F(3, 31) = 0.707, p = 0.550, ²ₚ = 0.024, BFincl = 0.001) and between group and sex  

(F(1, 33) = 0.524, p = 0.475, ²ₚ = 0.018, BFincl = 0.614) were found. Moreover, no 

statistically significant effects of group (F(1, 33) = 1.447, p = 0.239, ²ₚ = 0.048,  

BFincl = 0.662) and sex (F(1, 33) = 0.268, p = 0.609, ²ₚ = 0.009, BFincl = 0.554) were 

revealed.  

After BOLD correction 

After apodization, a trend-level effect of group was observed (F(1, 30) = 3.101, p = 0.090, 

²ₚ = 0.107, BFincl = 0.598), with higher glutamate concentration in the control group (see 

Figure 32). A statistically significant effect of gray matter volume was revealed  

(F(1, 30) = 5.843, p = 0.023, ²ₚ = 0.184, BFincl = 2.843).  
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Figure 32. Difference in glutamate concentration between the control and dyslexic groups after BOLD 

correction in the left superior temporal sulcus, based on data grouped by delay acquired on a 3 Tesla scanner. 

No statistically significant effects of delay (F(3, 28) = 0.873, p = 0.459, ²ₚ = 0.032,  

BFincl = 0.033) and stimulation type (F(1, 30) = 1.650, p = 0.210, ²ₚ = 0.060,  

BFincl = 0.257) were revealed. No statistically significant interactions between stimulation 

type and group (F(1, 30) = 0.236, p = 0.631, ²ₚ = 0.009, BFincl = 0.302), between 

stimulation type and sex (F(1, 30) = 2.083, p = 0.161, ²ₚ = 0.074, BFincl = 0.513), between 

stimulation type, group and sex (F(1, 30) = 1.263, p = 0.271, ²ₚ = 0.046, BFincl = 0.338), 

between delay and group (F(3, 28) = 0.374, p = 0.772, ²ₚ = 0.014, BFincl = 0.076), between 

delay and sex (F(3, 28) = 0.566, p = 0.639, ²ₚ = 0.021, BFincl = 0.076), between delay, 

group and sex (F(3, 28) = 0.534, p = 0.660, ²ₚ = 0.020, BFincl = 0.141), between stimulation 

type and delay (F(3, 28) = 0.534, p = 0.660, ²ₚ = 0.020, BFincl = 0.111), between 

stimulation type, delay and group (F(3, 28) = 0.235, p = 0.872, ²ₚ = 0.009, BFincl = 0.195), 

between stimulation type, delay and sex (F(3, 28) = 2.065, p = 0.112, ²ₚ = 0.074,  

BFincl = 0.613), between stimulation type, delay, group and sex (F(3, 28) = 0.113, p = 0.952, 

²ₚ = 0.004, BFincl = 0.105) and between group and sex (F(1, 30) = 1.768, p = 0.195,  

²ₚ = 0.064, BFincl = 0.820) were observed. No statistically significant effect of sex  

(F(1, 30) = 1.320, p = 0.261, ²ₚ = 0.048, BFincl = 0.683) was found.  
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3.2.3.5. Data analyzed using the dynamic-averaged approach 

Medial prefrontal cortex 

Analysis using the dynamic-averaged approach did not find a significant effect of delay 

(F(3, 34) = 1.687, p = 0.175, ²ₚ = 0.050, BFincl = 0.099) or stimulation type  

(F(1, 36) = 0.666, p = 0.421, ²ₚ = 0.020, BFincl = 0.140) in the medial prefrontal cortex. 

A statistically significant interaction between stimulation type, group, and sex was revealed 

(F(1, 36) = 5.253, p = 0.029, ²ₚ = 0.141, BFincl = 1.571), driven by a trend-level difference 

in typical reading females between stimulation using words (lower glutamate 

concentration) and false font strings (t(32) = -1.926, p = 0.063, d = -0.292) (see Figure 33). 

Additionally, the interaction between stimulation type and delay was statistically 

significant (F(3, 34) = 3.680, p = 0.015, ²ₚ = 0.103, BFincl = 0.177), with lower glutamate 

levels 1000 ms after word stimulation compared to 4500 ms (t(32) = -2.076, p = 0.046,  

d = -0.357) and a trend-level higher glutamate concentration 500 ms after false font string 

stimulation compared to 3000 ms (t(32) = 1.913, p = 0.065, d = 0.382) (see Figure 34). 

Moreover, statistically significant interactions between stimulation type, delay, and age 

(F(3, 34) = 3.198, p = 0.027, ²ₚ = 0.091), and between stimulation type, delay, and gray 

matter volume (F(3, 34) = 3.258, p = 0.025, ²ₚ = 0.092), were observed. A significant 

effect of age was discovered (F(1, 36) = 4.640, p = 0.039, ²ₚ = 0.127, BFincl = 3.119). 

 

Figure 33. Difference in glutamate concentration in females from the control group between stimulation with 

words and false font strings (written in bacs font), based on data analyzed using the dynamic-averaged 

approach on 3 Tesla scanner.  
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Figure 34. Difference in glutamate concentration on 3 Tesla scanner at different time delays: a) after word 

stimulation; b) after false font string stimulation, based on data analyzed using the dynamic-averaged 

approach in the medial prefrontal cortex. 

Furthermore, no statistically significant interactions between stimulation type and group 

(F(1, 36) = 6.475  10-7, p = 0.999, ²ₚ = 2.023  10-8, BFincl = 0.726), between stimulation 

type and sex (F(1, 36) = 1.780, p = 0.192, ²ₚ = 0.053, BFincl = 0.299), between delay and 

group (F(3, 34) = 0.453, p = 0.716, ²ₚ = 0.014, BFincl = 0.065), between delay and sex 

(F(3, 34) = 0.299, p = 0.826, ²ₚ = 0.009, BFincl = 0.061), between delay, group and sex 

(F(3, 34) = 0.953, p = 0.418, ²ₚ = 0.029, BFincl = 0.180), between stimulation type, delay 

and group (F(3, 34) = 0.615, p = 0.607, ²ₚ = 0.019, BFincl = 0.178), between stimulation 

type, delay and sex (F(3, 34) = 0.077, p = 0.972, ²ₚ = 0.002, BFincl = 0.073), between 

stimulation type, delay, group and sex (F(3, 34) = 0.341, p = 0.795, ²ₚ = 0.011,  

BFincl = 0.115) and between group and sex (F(1, 36) = 0.348, p = 0.559, ²ₚ = 0.011,  

BFincl = 0.505) were observed. Additionally, no statistically significant effects of group 

(F(1, 36) = 0.060, p = 0.809, ²ₚ = 0.002, BFincl = 0.263) and sex (F(1, 36) = 2.130,  

p = 0.154, ²ₚ = 0.062, BFincl = 0.915) were found.  

After BOLD correction 

After the procedure aimed at correcting the potential influence of the BOLD effect on 

spectra, a statistically significant interaction between stimulation type, group, and sex 

remained significant (F(1, 35) = 5.761, p = 0.023, ²ₚ = 0.157, BFincl = 1.011), with  

a trend-level difference between females and males (stronger glutamate response) 

diagnosed with dyslexia after false font string stimulation (t(31) = -1.727, p = 0.094,  

d = -0.607). A trend-level difference was also observed in females from the control group 

after words (lower glutamate concentration) and false font string stimulation  
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(t(31) = -1.807, p = 0.080, d = -0.270) (see Figure 35). A statistically significant interaction 

was observed between stimulation type and delay ((F(3, 33) = 3.402, p = 0.021, ²ₚ = 0.099, 

BFincl = 0.117), caused by the difference in glutamate concentration after words stimulation 

between 1000 ms and 4500 ms (t(31) = -2.275, p = 0.030, d = -0.378), with higher glutamate 

after 4500 ms (see Figure 36). Additionally, a statistically significant interaction was found 

between stimulation type, delay, and age (F(3, 33) = 2.865, p = 0.041, ²ₚ = 0.085), and  

a trend-level interaction between stimulation type, delay, and gray matter volume  

(F(3, 33) = 2.596, p = 0.057, ²ₚ = 0.077). A statistically significant effect of participants' 

age was revealed (F(1, 35) = 5.130, p = 0.031, ²ₚ = 0.142, BFincl = 3.480).  

 

Figure 35. Glutamate differences on 3 Tesla scanner: a) between females and males in the dyslexic group 

after false font string stimulation; b) between stimulation with words and false font strings in typical reading 

females. 

 

Figure 36. Difference in glutamate concentration at different time delays after word stimulation in the medial 

prefrontal cortex, after BOLD correction, observed on a 3 Tesla scanner for data analyzed using the dynamic-

averaged approach. 

The effects of delay (F(3, 33) = 1.424, p = 0.241, ²ₚ = 0.044, BFincl = 0.097) and stimulation 

type (F(1, 35) = 0.668, p = 0.420, ²ₚ = 0.021, BFincl = 0.169) were not significant. 
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No statistically significant interactions between stimulation type and group  

(F(1, 35) = 0.020, p = 0.887, ²ₚ = 6.566  10-4, BFincl = 0.217), between stimulation type 

and sex (F(1, 35) = 0.108, p = 0.744, ²ₚ = 0.003, BFincl = 0.245), between delay and group 

(F(3, 33) = 0.569, p = 0.636, ²ₚ = 0.018, BFincl = 0.068), between delay and sex  

(F(3, 33) = 0.205, p = 0.893, ²ₚ = 0.007, BFincl = 0.039), between delay, group and sex 

(F(3, 33) = 1.177, p = 0.323, ²ₚ = 0.037, BFincl = 0.244), between stimulation type, delay 

and group (F(3, 33) = 0.524, p = 0.667, ²ₚ = 0.017, BFincl = 0.172), between stimulation 

type, delay and sex (F(3, 33) = 0.179, p = 0.910, ²ₚ = 0.006, BFincl = 0.129), between 

stimulation type, delay, group and sex (F(3, 33) = 0.547, p = 0.651, ²ₚ = 0.017,  

BFincl = 0.102) and between group and sex (F(1, 35) = 0.190, p = 0.666, ²ₚ = 0.006,  

BFincl = 0.322) were observed. No statistically significant effects of group (F(1, 35) = 0.183, 

p = 0.672, ²ₚ = 0.006, BFincl = 0.341) and sex (F(1, 35) = 2.253, p = 0.143, ²ₚ = 0.068, 

BFincl = 1.326) were found.  

Left superior temporal sulcus 

In the left superior temporal cortex, the effects of delay (F(3, 31) = 0.864, p = 0.463,  

²ₚ = 0.029, BFincl = 0.100) and stimulation type (F(1, 33) = 1.759, p = 0.195, ²ₚ = 0.057, 

BFincl = 0.196) were not significant. 

A statistically significant interaction between stimulation type, delay, and sex was observed 

(F(3, 31) = 3.794, p = 0.013, ²ₚ = 0.116, BFincl = 2.141), with higher glutamate 

concentration after words compared to false font string stimulation in females at 500 ms 

(t(29) = 2.083, p = 0.046, d = 0.313). A significant difference between stimulation types 

was also found for males at 1000 ms (t(29) = -2.450, p = 0.021, d = -0.331), with higher 

glutamate levels after false font string stimulation compared to words. Additionally, for 

females stimulated with false font strings, a difference between 500 ms and 3000 ms  

(t(29) = -2.074, p = 0.047, d = -0.431), and 4500 ms (t(29) = -2.043, p = 0.050, d = -0.439) 

was detected, with lower glutamate after 500 ms. A trend-level difference was observed 

between 1000 ms (lower glutamate) and 3000 ms (t(29) = -1.765, p = 0.088, d = -0.237), 

and 4500 ms (t(29) = -1.840, p = 0.076, d = -0.245). Moreover, males stimulated with false 

font strings showed a stronger glutamate response after 1000 ms compared to 3000 ms 

(t(29) = 2.547, p = 0.016, d = 0.333) (see Figure 37). A trend-level interaction between 

stimulation type and gray matter volume was demonstrated (F(1, 33) = 3.077, p = 0.090, 
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²ₚ = 0.096). A statistically significant effect of gray matter volume within the voxel was 

reported (F(1, 33) = 7.703, p = 0.010, ²ₚ = 0.210, BFincl = 5.415). 

 

Figure 37. Difference in glutamate concentration in statistically significant interaction between stimulation 

type, delay, and sex between on 3 Tesla scanner: a) words and false font strings stimulation in females after 

500 ms; b) words and false font strings stimulation in males after 1000 ms; c) different delays after false font 

strings stimulations in females; d) different delays after false font strings stimulations in males, in left superior 

temporal sulcus in dynamic-averaged approach. 

Furthermore, no statistically significant interactions between stimulation type and group 

(F(1, 33) = 0.401, p = 0.532, ²ₚ = 0.014, BFincl = 0.241), between stimulation type and sex 

(F(1, 33) = 1.764, p = 0.194, ²ₚ = 0.057, BFincl = 0.459), between stimulation type, group 

and sex (F(1, 33) = 2.952  10-5, p = 0.996, ²ₚ = 1.018  10-6, BFincl = 0.867), between delay 

and group (F(3, 31) = 0.008, p = 0.999, ²ₚ = 2.764  10-4, BFincl = 0.094), between delay 

and sex (F(3, 31) = 0.677, p = 0.569, ²ₚ = 0.023, BFincl = 0.088), between delay, group and 

sex (F(3, 31) = 0.800, p = 0.497, ²ₚ = 0.027, BFincl = 0.180), between stimulation type and 

delay (F(3, 31) = 0.835, p = 0.478, ²ₚ = 0.028, BFincl = 0.064), between stimulation type, 

delay and group (F(3, 31) = 0.326, p = 0.807, ²ₚ = 0.011, BFincl = 0.216), between 

stimulation type, delay, group and sex (F(3, 31) = 0.847, p = 0.472, ²ₚ = 0.028,  
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BFincl = 0.286) and between group and sex (F(1, 33) = 0.017, p = 0.898, ²ₚ = 5.804  10-4, 

BFincl = 0.510) were revealed. No statistically significant effects of group (F(1, 33) = 0.240, 

p = 0.628, ²ₚ = 0.008, BFincl = 0.580) and sex (F(1, 33) = 0.010, p = 0.919,  

²ₚ = 3.607  10-4, BFincl = 0.775) were found.  

After BOLD Correction 

After BOLD correction, the interaction between stimulation type, delay, and sex remained 

statistically significant (F(3, 28) = 3.413, p = 0.021, ²ₚ = 0.116, BFincl = 1.489), driven by 

the difference between words (higher glutamate concentration) and false font strings for 

females after 500 ms (t(26) = 2.807, p = 0.009, d = 0.438) and between words (lower 

glutamate concentration) and false font strings for males after 1000 ms (t(26) = -3.002,  

p = 0.006, d = -0.399). Moreover, females after false font string stimulation showed 

different glutamate concentrations between 500 ms, when glutamate levels were lower 

compared to 3000 ms (t(26) = -2.725, p = 0.011, d = -0.592), 4500 ms (t(26) = -2.383,  

p = 0.025, d = -0.581), and a trend-level difference to 1000 ms (t(26) = -1.770, p = 0.088, 

d = -0.369). Furthermore, males after false font string stimulation demonstrated differences 

between delays at 1000 ms (higher glutamate concentration) and 3000 ms (t(26) = 3.605,  

p = 0.001, d = 0.430), and a trend-level difference to 4500 ms (t(26) = 1.760, p = 0.090,  

d = 0.243). A trend-level difference at 500 ms after false font string stimulation was 

observed between females and males (t(26) = -1.870, p = 0.073, d = -0.618) (see Figure 

38). A trend-level interaction between stimulation type, delay, and age was revealed  

(F(3, 28) = 2.345, p = 0.079, ²ₚ = 0.083). In addition, a trend-level effect of gray matter 

volume was found (F(1, 30) = 4.159, p = 0.052, ²ₚ = 0.138, BFincl = 1.832).  
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Figure 38. Glutamate concentration differences on 3 Tesla scanner: a) between words and false font string 

stimulation in females after 500 ms; b) between words and false font string stimulation in males after 1000 

ms; c) differences between delays after false font string stimulation in females; d) differences between delays 

after false font string stimulation in males; e) between females and males at 500 ms after false font string 

stimulation, in the left superior temporal sulcus, using the dynamic-averaged approach after BOLD 

correction. 

No statistically significant effect of delay (F(3, 28) = 0.501, p = 0.683, ²ₚ = 0.019,  

BFincl = 0.118) and stimulation type (F(1, 30) = 1.337, p = 0.258, ²ₚ = 0.049,  

BFincl = 0.186) were revealed. 

No statistically significant interactions between stimulation type and group  

(F(1, 30) = 0.076, p = 0.785, ²ₚ = 0.003, BFincl = 0.274), between stimulation type and sex 

(F(1, 30) = 2.155, p = 0.154, ²ₚ = 0.077, BFincl = 0.548), between stimulation type, group 
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and sex (F(1, 30) = 0.230, p = 0.635, ²ₚ = 0.009, BFincl = 0.378), between delay and group 

(F(3, 28) = 0.086, p = 0.968, ²ₚ = 0.003, BFincl = 0.100), between delay and sex  

(F(3, 28) = 1.069, p = 0.367, ²ₚ = 0.039, BFincl = 0.186), between delay, group and sex 

(F(3, 28) = 1.168, p = 0.327, ²ₚ = 0.043, BFincl = 0.752), between stimulation type and 

delay (F(3, 28) = 0.739, p = 0.532, ²ₚ = 0.028, BFincl = 0.187), between stimulation type, 

delay and group (F(3, 28) = 0.355, p = 0.786, ²ₚ = 0.013, BFincl = 0.125), between 

stimulation type, delay, group and sex (F(3, 28) = 1.212, p = 0.311, ²ₚ = 0.045,  

BFincl = 1.655) and between group and sex (F(1, 30) = 0.148, p = 0.704, ²ₚ = 0.006,  

BFincl = 0.642) were observed. No statistically significant effects of group (F(1, 30) = 0.593, 

p = 0.448, ²ₚ = 0.022, BFincl = 0.574) and sex (F(1, 30) = 0.146, p = 0.705, ²ₚ = 0.006, 

BFincl = 0.615) were found.  
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3.3.  Experiment 3 – comparing data quality between the 7T and the 3T 

scanners 

The quality of data from the 7T and 3T scanners was compared based on parameters 

automatically calculated by the FSL-MRS software. Data were averaged across all spectra, 

with 320 signals per dataset from each voxel. The brain regions, the medial prefrontal 

cortex and the left superior temporal sulcus, were analyzed separately. The comparison was 

based on the signal-to-noise ratio (SNR), percentage Cramer-Rao lower bound (%CRLB), 

full width at half maximum (FWHM) for two metabolites: glutamate and N-acetylaspartic 

acid (NAA), and linewidth across the entire spectrum. Data were compared for the same 

participants who took part in both functional magnetic resonance spectroscopy sessions on 

both scanners. As a result, data from the medial prefrontal cortex were analyzed for 34 

participants: 18 from the control group (11 females, 7 males), and 16 from the dyslexic 

group (8 females, 8 males). For the left superior temporal sulcus, data from 30 participants 

were analyzed: 17 from the control group (10 females, 7 males), and 13 from the dyslexic 

group (6 females, 7 males). 

Linewidth and FWHM, expressed in Hertz (Hz), differed between the 7T and 3T scanners 

due to the varying Larmor frequencies of the two scanners. As a result, these values 

required recalculation to ensure consistency across the scanners. The results for the 3T 

scanner were adjusted by a factor corresponding to the difference in Larmor frequency 

between the two scanners. All presented results were corrected for the Larmor frequency 

difference. 

3.3.1. Linewidth 

Linewidth is a parameter that describes the width of the peaks in the spectrum. Narrower 

peaks are easier to distinguish, which implies that a lower linewidth value indicates better 

spectral quality. In other words, a smaller linewidth typically suggests higher resolution 

and more accurate identification of metabolite peaks, leading to more reliable data analysis. 

Linewidth may be influenced by shimming quality, which ensures the homogeneity of the 

magnetic field. Poor shimming can lead to broader peaks, resulting in higher linewidth 

values and potentially reducing spectral resolution. 

In the medial prefrontal cortex, a statistically significant difference in linewidth between 

the 7T and 3T scanners was revealed (t(33) = 3.589, p = 0.001, d = 0.615), with a higher 
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mean linewidth on the 7T scanner 11.082 (SD = 2.982, Min = 6.120, Max = 17.850) 

compared to the 3T scanner 8.966 (SD = 1.885, Min = 5.540, Max = 14.210) (see  

Figure 39). 

 

Figure 39. Linewidth comparison for data from the medial prefrontal cortex between the 7T and 3T scanners. 

Statistical comparison showed a significantly higher mean linewidth on the 7T scanner. 

Linewidth in the left superior temporal sulcus did not statistically differ between scanners 

(t(29) = 1.495, p = 0.146, d = 0.273), with the mean linewidth for the 7T scanner at 10.760 

(SD = 3.090, Min = 6.730, Max = 18.740) and for the 3T scanner (after correction) at 

10.110 (SD = 2.102, Min = 7.230, Max = 16.180) (see Figure 40). 
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Figure 40. Linewidth comparison for data from the left superior temporal sulcus between the 7T and 3T 

scanners. No statistically significant difference was observed between the two scanners.  

3.3.2. Signal-to-noise ratio (SNR) 

The Signal-to-noise ratio (SNR) is a parameter calculated as the ratio of the amplitude of 

the main metabolite peak to the standard deviation of the noise, which is measured in  

a spectral area where no metabolite signals are present. It is expressed as: 

𝑆𝑁𝑅 =


𝑠𝑖𝑔𝑛𝑎𝑙

𝑛𝑜𝑖𝑠𝑒
 

Where 
𝑠𝑖𝑔𝑛𝑎𝑙

 is the mean amplitude of the main metabolite peak, and 𝑛𝑜𝑖𝑠𝑒  is the standard 

deviation of the noise in a region of the spectrum where no metabolite signals are observed. 

A higher SNR indicates better data quality, as metabolite signals are easier to distinguish 

from noise.  

Glutamate 

In the control brain region, the SNR for glutamate was significantly different between the 

7T and 3T scanners, with a higher SNR for the high-field scanner (t(33) = 6.310, p < 0.001, 

d = 1.082). The mean SNR for the 7T scanner was 27.109 (SD = 5.834, Min = 15.690,  
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Max = 42.780), while for the 3T scanner it was 20.425 (SD = 5.047, Min = 10.750,  

Max = 33.030) (see Figure 41). 

 

Figure 41. Signal-to-noise ratio (SNR) comparison for glutamate data from the medial prefrontal cortex 

between the 7T and 3T scanners. Statistical analysis showed a significantly higher mean SNR for glutamate 

on the 7T scanner. 

No statistically significant difference in glutamate SNR was observed in the left superior 

temporal sulcus (t(29) = 0.692, p = 0.494, d = 0.126). The mean SNR for the 7T scanner 

was 20.972 (SD = 7.182, Min = 7.820, Max = 36.600), and for the 3T scanner it was 20.135 

(SD = 5.307, Min = 11.140, Max = 30.540) (see Figure 42). 
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Figure 42. Signal-to-noise ratio (SNR) comparison for glutamate data from the left superior temporal sulcus 

between the 7T and 3T scanners. No statistically significant difference was observed between the two 

scanners. 

NAA 

No statistically significant difference in SNR for NAA was found in the medial prefrontal 

cortex between the two scanners (t(33) = 1.602, p = 0.119, d = 0.275). The mean SNR for 

the 7T scanner was 71.392 (SD = 22.309, Min = 36.900, Max = 134.330), and for the 3T 

scanner it was 64.675 (SD = 18.384, Min = 31.190, Max = 105.990) (see Figure 43). 
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Figure 43. Signal-to-noise ratio (SNR) comparison for NAA data from the medial prefrontal cortex between 

the 7T and 3T scanners. No statistically significant difference was observed between the two scanners. 

In the left superior temporal sulcus, no statistically significant differences between scanners 

were observed (t(29) = -0.071, p = 0.944, d = -0.013). For the high-field scanner, the mean 

SNR for NAA was 78.312 (SD = 27.375, Min = 22.160, Max = 143.830), and for the 3T 

scanner, it was 78.576 (SD = 16.052, Min = 44.970, Max = 113.190) (see Figure 44). 
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Figure 44. Signal-to-noise ratio (SNR) comparison for NAA data from the left superior temporal sulcus 

between the 7T and 3T scanners. No statistically significant difference was observed between the two 

scanners. 

3.3.3. Percentage Cramer-Rao lower bound (%CRLB) 

The Percentage Cramer-Rao Lower Bound (%CRLB) is a measure of the precision of the 

estimated metabolite concentration. A lower %CRLB indicates a more reliable and accurate 

estimate, reflecting lower estimation error. A higher %CRLB suggests a less accurate 

estimate, often due to weaker signals or increased noise in the data. 

Glutamate 

A statistically significant difference in %CRLB for glutamate between the 7T and 3T 

scanners in the medial prefrontal cortex was found. Due to a significant deviation from 

normality (Shapiro-Wilk test: p = 0.003), a nonparametric Wilcoxon signed-rank test was 

used (Z = -4.941, p < 0.001, effect size r = -0.971), with a lower %CRLB for the high-field 

scanner: the mean for the 7T scanner was 2.064 (SD = 0.282, Min = 1.630, Max = 2.730), 

and for the 3T scanner it was 2.721 (SD = 0.385, Min = 2.250, Max = 3.920) (see  

Figure 45). 
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Figure 45. Percentage Cramer-Rao Lower Bound %CRLB comparison for glutamate data from the medial 

prefrontal cortex between the 7T and 3T scanners. Statistical analysis showed a significantly lower mean 

%CRLB for glutamate on the 7T scanner. 

In the left superior temporal sulcus, a statistically significant difference between scanners 

was observed (Wilcoxon signed-rank test: Z = -2.499, p = 0.011, r = -0.523; Shapiro-Wilk 

test: p = 0.033), with better quality for the 7T scanner. The mean %CRLB for the 7T scanner 

was 3.075 (SD = 0.900, Min = 2.030, Max = 5.920), and for the 3T scanner it was 3.742 

(SD = 1.177, Min = 2.390, Max = 7.430) (see Figure 46). 
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Figure 46. Percentage Cramer-Rao Lower Bound %CRLB comparison for glutamate data from the left 

superior temporal sulcus between the 7T and 3T scanners. Statistical analysis showed a significantly lower 

mean %CRLB for glutamate on the 7T scanner. 

NAA 

A statistically significant difference in %CRLB for NAA was found between the analyzed 

scanners (t(33) = -2.757, p = 0.009, d = -0.473), with a higher result for the 3T scanner. 

The mean %CRLB for the 7T scanner was 1.639 (SD = 0.388, Min = 1.080, Max = 2.630), 

and for the 3T scanner it was 1.907 (SD = 0.423, Min = 1.190, Max = 2.940) (see  

Figure 47). 
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Figure 47. Percentage Cramer-Rao Lower Bound %CRLB comparison for NAA data from the medial 

prefrontal cortex between the 7T and 3T scanners. Statistical analysis showed a significantly lower mean 

%CRLB for NAA on the 7T scanner. 

No statistically significant difference in %CRLB for NAA was found between the data 

from both scanners (t(29) = -0.999, p = 0.326, d = -0.182). The mean %CRLB for the 7T 

scanner was 1.784 (SD = 0.469, Min = 1.000, Max = 2.750), and for the 3T scanner it was 

1.904 (SD = 0.581, Min = 1.150, Max = 3.810) (see Figure 48). 
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Figure 48. Percentage Cramer-Rao Lower Bound %CRLB comparison for NAA data from the left superior 

temporal sulcus between the 7T and 3T scanners. No statistically significant difference was observed between 

the two scanners. 

3.3.4. Full width at half maximum (FWHM) 

The full width at half maximum (FWHM) parameter describes the width of a single 

metabolite peak in the spectrum, measured at half of its maximum intensity, in Hertz (Hz). 

FWHM for data acquired on the 3T scanner was recalculated to compensate for the 

difference in Larmor frequency. Similar to linewidth, which was calculated for all 

metabolites together, lower values of FWHM indicate narrower peaks, making them easier 

to distinguish. FWHM was not calculated correctly for some datasets from the 3T scanner 

(parameter had a value of 0), likely due to difficulties in separating the glutamate peak. As 

a result, only the analysis of N-acetylaspartic acid data from the 3T scanner was conducted. 

In the medial prefrontal cortex, a statistically significant difference was observed, with 

narrower peaks for the 3T scanner (t(33) = 4.027, p < 0.001, d = 0.691). The mean FWHM 

for NAA on the 7T scanner was 13.872 (SD = 3.294, Min = 8.330, Max = 20.440), and for 

the 3T scanner it was 11.360 (SD = 1.668, Min = 8.700, Max = 16.200) (see Figure 49). 

 

Figure 49. Full width at half maximum (FWHM) comparison for NAA data from the medial prefrontal cortex 

between the 7T and 3T scanners. Statistical analysis showed a significantly higher mean FWHM for NAA on 

the 7T scanner. 
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For the left superior temporal sulcus, no significant difference between scanners was 

revealed (Wilcoxon signed-rank test: Z = 0.802, p = 0.428, r = 0.168; Shapiro-Wilk test:  

p = 0.029). The mean FWHM for NAA on the 7T scanner was 13.291 (SD = 3.409,  

Min = 8.880, Max = 22.550), and for the 3T scanner it was 12.678 (SD = 2.020,  

Min = 10.010, Max = 18.880) (see Figure 50). 

 

Figure 50. Full width at half maximum (FWHM) comparison for NAA data from the left superior temporal 

sulcus between the 7T and 3T scanners. No statistically significant difference was observed between the two 

scanners. 
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4. Discussion 

The present study employed functional magnetic resonance spectroscopy (fMRS) to 

investigate glutamate modulation in response to reading-related visual stimulation. Regions 

of interest were localized individually based on fMRI activations rather than anatomical 

landmarks, allowing us to target reading-sensitive cortex: the left superior temporal sulcus 

(STS) and the visual word form area (VWFA). In addition, the medial prefrontal cortex 

(mPFC) was included as an anatomically defined control region. Participants were 

presented with two types of stimuli: meaningful words in Polish and visually matched  

false-font strings. 

As far as I am aware, this is the first study to examine the main excitatory neurotransmitter 

during reading tasks within individually defined, functionally localized regions. The 

sample included individuals with dyslexia and typical readers. 

The experimental design addressed five aims. First, we assessed whether glutamate 

concentrations change in response to reading-related stimulation. Second, we tested the 

neural noise hypothesis in dyslexia, which proposed a mechanistic account for reading 

difficulties based on elevated glutamate levels in the STS. Third, we examined regional 

specificity of the observed effects by testing whether the control region (mPFC) shows any 

task- or group- related modulation. Fourth, we investigated the temporal dynamics of 

glutamate response, an aspect still poorly understood. Finally, we compared data quality 

between 3T and 7T scanners to evaluate methodological implications for future fMRS 

studies. 

In the following sections, we discuss each aim in turn and highlight their implications in 

the context of prior literature. 

4.1.  Glutamate concentration changes in response to reading  

The first aim of this study was to investigate whether glutamate concentrations change in 

response to reading-related visual stimulation in two language-sensitive regions: the left 

superior temporal sulcus (STS) and the visual word form area (VWFA). Both regions were 

individually defined as showing higher activation for words compared to false font strings 

in each participant. Based on prior work, we expected a glutamate increase following 
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language stimulation compared to rest in the STS, which is known to respond to both visual 

and auditory input (van Atteveldt et al., 2004) and shows higher activation to printed words 

compared to symbol strings (Dębska et al., 2021). For the VWFA, we anticipated stronger 

modulation for meaningful words presented in Polish compared to visually matched  

false-font strings (Dehaene & Cohen, 2011). 

For the VWFA, we were unable to obtain sufficient high-quality spectra for reliable 

analysis. To the best of my knowledge, no previous study has applied MRS or fMRS in this 

region, most likely due to the technical challenges of voxel placement and spectral 

acquisition in this anatomically small, susceptibility-prone area near air-filled sinuses (see 

Figure 51). On the 7T scanner, VWFA spectra were acquired in 42 out of 59 participants, 

but only 12 met quality criteria. On the 3T scanner, spectra were obtained in 21 out of 40 

participants, with only 9 being suitable for analysis. These results highlight the substantial 

difficulty of reliably measuring neurochemical signals in the VWFA. Future studies could 

benefit from optimized voxel placement and advanced shimming techniques to improve 

data quality in this region. 

 

Figure 51. Example of the location of the visual word form area (VWFA) in one participant. 

In the STS, no consistent increase in glutamate concentration was observed during 

linguistic stimulation compared to rest. Although an interaction with sex was initially 

observed at 7T, it disappeared after BOLD correction, which suggests that the effect was 

at least partly driven by hemodynamic changes rather than true neurochemical modulation. 

Interestingly, the direction of the effect differed between sexes: females tended to show 

higher glutamate levels after both types of visual stimulation (words and false fonts) 

compared to rest, whereas in males the opposite pattern emerged, but only for word stimuli, 

where glutamate levels were lower during stimulation than at rest. 
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Findings between scanners were inconsistent. Results from the 3T scanner showed no 

significant difference in glutamate concentration between rest and stimulation with words 

or false font strings. However, after BOLD correction, glutamate levels increased with 

word stimulation, as expected. A significant interaction between stimulation and sex was 

observed: females showed a stronger glutamate response to word stimulation compared to 

both false font strings and rest, while males’ glutamate levels remained stable across 

conditions. Interestingly, females had lower glutamate levels during rest and after false font 

string stimulation compared to males. Differences between 3T and 7T results may reflect 

both sample characteristics (a smaller sample was included in the 3T experiment) and the 

limitations of BOLD correction. These methodological factors should be taken into account 

when interpreting the observed differences. 

Given the established role of the STS in audiovisual integration of letters and speech sounds 

(Beck et al., 2024) and reading development (Chyl et al., 2018, Feng et al. 2020), the 

absence of robust glutamate modulation observed here suggests that neurochemical 

responses in this region may be subtler than expected. To the best of my knowledge, only 

one previous fMRS study has measured neurometabolite concentrations in the STS. Pasanta 

et al. (2024), in a small sample of 11 participants, investigated GABA and glutamate 

responses to social (faces) versus non-social (objects) visual stimuli. They reported no 

consistent modulation by face stimuli in the STS, while small effects were observed for 

object stimuli. Overall, the authors concluded that the minimal changes they detected were 

more likely to reflect basic visual processing than social-specific effects. In contrast, the 

present study revealed some task-related changes in the STS during reading, potentially 

reflecting both the different cognitive paradigm and the larger sample size employed here. 

Importantly, Pasanta et al. (2024) also emphasized that their passive viewing paradigm was 

not inherently social and might therefore not have been sufficiently engaging to elicit robust 

neurochemical responses. By analogy, it is possible that the reading task with single short 

words used in the present study was also not demanding enough to consistently drive 

measurable metabolite changes in the STS. Indeed, a recent meta-analysis (Turker et al., 

2025) of 163 fMRI studies during reading in adults, highlights the role of left STS in 

sentence processing, with more consistent activation than for single words.  

Previous MRS studies have primarily been conducted in the resting state, comparing 

baseline metabolite concentrations between individuals with and without dyslexia  
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(e.g., Rae et al., 1998; Pugh et al., 2014). These studies reported group-level differences in 

glutamate and GABA concentrations in language-related regions, but they did not address 

dynamic, task-related neurochemical modulation. The present study therefore extends this 

line of research by applying fMRS in the STS to examine whether glutamate levels change 

in response to reading-related visual stimuli. 

Overall, this study provides important methodological insights and highlights the 

challenges of probing small cortical regions such as the VWFA, as well as the subtle nature 

of task-related neurochemical modulation in language-sensitive areas. 

4.2.  The neural noise hypothesis of dyslexia 

The second aim of this study was to test the neuronal noise hypothesis, which proposes that 

dyslexia may result from elevated glutamate concentrations in the left STS, leading to 

impaired signal processing (Hancock et al., 2017). Based on this account, we expected 

group differences in the left STS, with lower glutamate levels in typical readers. 

Furthermore, the hypothesis predicts that increased glutamate in individuals with dyslexia 

should correlate with poorer performance on reading-related behavioral tasks such as 

phonological awareness and rapid automatized naming (RAN). 

As expected, participants with dyslexia scored lower on reading-related behavioral tasks, 

including RAN and phonological awareness at 7T, and a similar pattern was observed at 

3T, except for digit and object RAN. These behavioral results are consistent with the 

previous studies of dyslexia (e.g. Dębska et al., 2022) and provide a basis for testing 

whether such difficulties are associated with altered neurochemical responses in the STS, 

as predicted by the neuronal noise hypothesis. 

At 7T, no significant group differences were observed in glutamate concentration in the left 

STS. A trend-level interaction emerged in the mixed dynamic-averaging approach after 

BOLD correction, with female participants with dyslexia showing elevated glutamate 

relative to typical readers at specific delays (500 ms after false-font stimulation and  

3000 ms after word stimulation). At 3T, a significant group effect was found after BOLD 

correction when data were grouped by stimulus type, but in the opposite direction of the 

neuronal noise hypothesis: typical readers showed higher glutamate levels than individuals 

with dyslexia, irrespective of stimulation type. This effect appeared to be driven primarily 
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by differences in females as no significant group differences were present in males, and 

similar trends were observed in the delay-based analysis. Overall, the group effects were 

inconsistent across scanners and analysis approaches and seemed to depend on participants 

sex, indicating that the present results do not provide clear support for the neuronal noise 

hypothesis. At the same time this study highlights the need of including participants sex as 

an important factor in analyses of the neural basis of dyslexia (Ramus et al., 2018), even 

though no significant sex effects were observed on behavioral level.   

This study represents the first application of fMRS to directly examine the neuronal noise 

hypothesis in the left STS. As such, there are no prior fMRS findings available for direct 

comparison, and interpretation must therefore be guided by the broader MRS literature on 

dyslexia. Previous MRS studies have reported mixed findings regarding the excitatory–

inhibitory balance in dyslexia. Some results support the hypothesis, with higher glutamate 

concentrations in the occipital cortex linked to poorer reading and phonological skills (Pugh 

et al., 2014; Del Tufo et al., 2018), and reduced glutamatergic metabolites following 

reading intervention (Cecil et al., 2021). Others, however, point in the opposite direction, 

such as positive correlations between glutamate and phonological abilities in the anterior 

cingulate cortex (Lebel et al., 2016), or higher GABA levels in the left inferior frontal gyrus 

associated with poorer verbal fluency (Nakai & Okanoya, 2016). Adding to this mixed 

picture, other investigations have reported null findings in anterior cingulate cortex 

(Horowitz-Kraus et al., 2018) and in temporo-parietal and occipital regions (Kossowski et 

al., 2019).  

In this context, the present findings extend the literature by applying a dynamic, task-based 

fMRS approach to the STS. The absence of robust group-level differences suggests that the 

present findings do not provide clear support for the neuronal noise hypothesis in the STS. 

Although this study employed a novel dynamic fMRS paradigm in a language-related area, 

the findings remain inconclusive. Future work combining static and dynamic approaches 

will be essential to determine whether excitatory–inhibitory imbalance contributes to 

dyslexia. 

However, an important limitation of the current MRS literature on dyslexia is the 

considerable methodological heterogeneity across studies. Investigations have targeted 

different brain regions, employed diverse acquisition sequences and analysis strategies, and 

used varying reference approaches for metabolite quantification. Such variability in 
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methodology substantially complicates cross-study comparisons and may, at least in part, 

explain the mixed and sometimes contradictory findings regarding glutamate and GABA 

alterations in dyslexia. 

To gain a more comprehensive perspective, it is also useful to consider the evidence from 

studies using electroencephalography (EEG). Beyond neurochemical studies, 

complementary insights into the excitatory–inhibitory balance in dyslexia have been 

obtained from EEG. Turri et al. (2023) reported alterations in oscillatory dynamics, 

particularly in the beta frequency range, along with changes in the aperiodic component of 

the spectrum, both of which are thought to reflect disrupted excitatory–inhibitory 

regulation. Particularly, in the parieto-occipital regions participants with dyslexia presented 

lower aperiodic exponent and lower beta oscillations linked with higher excitation to 

inhibition balance as compared to the control group. While EEG does not directly measure 

glutamate or GABA, such findings provide evidence consistent with the neuronal noise 

hypothesis. A related multimodal study, which integrated averaged left STS MRS data from 

the overlapping sample of participants with EEG recordings obtained in an extended 

sample, also found no support for the neuronal noise hypothesis (Glica et al., 2025). Much 

larger sample and the convergence across analytic approaches underscores the need to 

explore other neural mechanisms associated with reading difficulties besides the neural 

noise hypothesis.  

Taken together, these findings indicate that while the neuronal noise hypothesis remains an 

important theoretical framework, the neurochemical basis of dyslexia is far from conclusive 

and requires further multimodal, region-specific investigation. 

4.3.  Regional specificity of fMRS effects 

The third aim of this thesis was to examine whether the effects observed in reading-related 

regions (VWFA and STS) are specific to those areas, or whether similar responses can also 

be detected in the medial prefrontal cortex (mPFC). Since the mPFC is not directly involved 

in reading (Richlan et al., 2009), it served as a control region to assess the regional 

specificity of the detected effects. 

The medial prefrontal cortex (mPFC) has been consistently linked to various neurological 

and psychiatric disorders, including depression, schizophrenia, and autism (Xu et al., 
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2019). While it is not traditionally considered a part of the core reading network (Richlan 

et al., 2009), the mPFC plays a central role in integrating information from other brain 

regions and translating it into coordinated behavioral output (Xu et al., 2019). It is a critical 

region for a range of higher-order cognitive processes, such as memory consolidation, rapid 

learning, and decision-making (Euston et al., 2012). These functions are closely associated 

with executive functioning, which has been proposed as an important contributor to reading 

development. Deficits in executive functions, observable even before reading acquisition 

in early childhood, have been linked to later reading difficulties and may serve as early 

indicators of dyslexia, offering potential for early intervention (Farah et al., 2021). 

Furthermore, children with dyslexia who successfully improved their reading and spelling 

skills showed strong negative intrinsic functional connectivity between the left fusiform 

gyrus and the right medial prefrontal cortex. This pattern is likely to reflect a compensatory 

mechanism rather than a normalization of typical connectivity (Koyama et al., 2013).  

When considering the response to reading-related stimulation, results in the mPFC revealed 

a number of interaction effects, though these were inconsistent across scanners and analytic 

approaches. At 7T, a significant interaction of stimulation type and sex was observed, 

driven by stronger responses to visual stimulation in females when data were grouped by 

stimulus type. However, this effect disappeared after BOLD correction. The mixed 

dynamic-averaging approach also revealed a significant interaction between stimulation 

type, delay, and group, which remained at a trend level after BOLD correction. At 3T, 

analyses based on delay indicated significant interactions involving stimulation type with 

several factors (group, sex, delay, age, and gray matter volume) and these effects remained 

significant after BOLD correction. A similar interaction pattern was found using the 

dynamic-averaged approach, again persisting after correction. 

In terms of group effects, no main effect of group was detected in the mPFC. While some 

interactions involving group did emerge, their direction was opposite to the predictions of 

the neuronal noise hypothesis. Thus, when considered together with the lack of conclusive 

interaction effects across scanners and analytic approaches, these findings indicate that the 

mPFC did not exhibit a stable activation pattern in response to reading-related stimulation. 

The overall results of the thesis did not reveal a clear and consistent glutamate increase 

across all examined regions. While some interactions emerged in the STS, these effects 

were not robust enough to support firm conclusions. In the VWFA, data quality issues 
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prevented reliable analysis, limiting interpretation for this region. In the mPFC, no 

systematic pattern of responses was reported. Taken together, these findings suggest that 

neurochemical responses to reading-related stimulation are likely to be subtle and highly 

sensitive to methodological factors and group composition. Importantly, the lack of 

systematic activation in the control region (mPFC) should not be interpreted as an absence 

of its involvement in reading. Rather, it indicates that the observed variability is unlikely 

to reflect a global, non-specific cortical response. Instead, the results highlight both the 

challenges of applying fMRS to study region-specific processes such as reading and the 

need for methodological improvements in the future work. It is possible that some of the 

observed responses in the mPFC were partly driven by decision-making demands of the 

task, as participants were asked to evaluate whether each stimulus was a target or not. 

Findings from nearby regions support the idea that prefrontal areas are also capable of 

showing dynamic neurochemical responses in fMRS. For example, Craven et al. (2024) 

demonstrated task-related increases in Glx, but not GABA, within the ACC during  

a cognitive control task, with fMRS-derived BOLD measures correlating with conventional 

fMRI responses. Similarly, Huang et al. (2015) reported Glx modulation in the mPFC 

during mental imagery. Together, these results indicate that frontal midline regions can 

exhibit robust metabolic reactivity under specific cognitive demands. In contrast, the 

present study did not detect consistent changes in glutamate in the mPFC during  

reading-related stimulation, suggesting that the engagement of this region may depend on 

the nature of the recruited cognitive process. Whereas imagery and executive control tasks 

strongly activate the prefrontal cortex, reading may not impose comparable demands, 

potentially accounting for the absence of systematic effects in our data. 

On the other hand, a recent meta-analysis by Kiemes et al. (2021) emphasized that while 

GABA levels in the mPFC and ACC show relatively robust and consistent negative 

associations with local fMRI activation during emotional processing (and similarly in the 

occipital lobe during visual tasks), evidence for task-related modulation of glutamate is far 

less consistent. Such effects appear more difficult to capture and often show substantial 

heterogeneity across studies. From this perspective, the absence of reliable glutamatergic 

responses in the present study is more likely to reflect methodological challenges in 

detecting Glu dynamics with fMRS, rather than indicating a true absence of neurochemical 

involvement of the mPFC. 
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Another consideration is the anatomical position close to the anterior cingulate cortex 

(ACC), which has been repeatedly implicated in dyslexia using conventional MRS 

approaches (see Figure 52). Several studies reported altered metabolite levels in the ACC 

in children with dyslexia, including associations between glutamate, creatine, and inositol 

concentrations and phonological processing (Lebel et al., 2016), as well as negative 

correlations between choline and processing speed in girls with dyslexia (Horowitz-Kraus 

et al., 2018). More recently, lower concentrations of Glx, Glu, Cr, and NAA in the ACC 

were linked to better word reading performance in dyslexic children (Cecil et al., 2021). 

These findings suggest that the ACC may play a role in reading-related difficulties, 

particularly through its involvement in executive control and attention. Given the close 

spatial proximity between the ACC and the mPFC, it cannot be excluded that some of the 

variability observed in the present study partially reflects neurochemical processes similar 

to those previously reported in the ACC. However, unlike prior studies relying on static 

MRS measures, the current approach employed dynamic fMRS, which may capture 

different aspects of glutamatergic function and could explain the lack of direct replication. 

 

Figure 52. Figure reproduced from Hand et al. (2024). Licensed under CC BY 4.0. 

In summary, no reliable glutamatergic responses to reading-related stimulation were 

detected in the mPFC. However, similarly weak or inconsistent patterns were also found in 

the reading-related region, the STS, suggesting that the absence of systematic effects in the 

control region does not reflect a specific lack of involvement of the mPFC in reading. 
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Instead, it points to the overall subtlety of task-related neurochemical responses under the 

current experimental conditions. 

4.4.  The glutamate response function 

The fourth aim of this study was to investigate how glutamate concentration changes over 

time following stimulation. A clear understanding of glutamate temporal dynamics could 

help in designing fMRS experiments that capture actual neurochemical responses without 

missing critical changes. To date, only a theoretical response function, derived from  

a meta-analysis, has been proposed, but it still lacks empirical validation (Mullins, 2018). 

Based on this theoretical prediction, we acquired data at four time intervals following 

stimulation onset: 500 ms, 1000 ms, 3000 ms, and 4500 ms. This approach allowed us to 

sample distinct points along the predicted curve and to investigate glutamate dynamics. 

Importantly, the stimuli employed in this study were more complex and of longer duration 

compared to those typically used. For this reason, the selected time intervals included both 

the early phase, when glutamate levels were expected to peak (500 ms and 1000 ms), as 

well as the later phase, when a return to baseline was predicted (3000 ms and 4500 ms). 

Notably, the acquisition at 500 ms occurred during the stimulation. Although additional 

time points would have provided a more detailed sampling of the glutamate response 

function, this was not possible due to methodological constraints. Extending the scanning 

protocol would have risked reduced data quality, increased motion artifacts, and participant 

fatigue, thereby compromising the validity of the results. 

In the present study, the results did not provide reliable evidence for glutamate changes 

across time points. At 3T, a trend-level effect of delay was observed in the control region, 

but this effect disappeared after applying BOLD correction, suggesting that it may have 

been partly driven by vascular rather than neurochemical contributions. Some statistically 

significant interactions with delay were detected; however, no clear temporal profile of 

glutamate dynamics emerged. These findings indicate that the shape of the glutamate 

response function remains difficult to characterize and may depend on several factors, 

including participants’ sex, type of stimulation and magnetic field strength. 

An important limitation of the present approach is the relatively small number of transients 

(MRS signals) averaged within each time window, which reduces the signal-to-noise ratio 



 145 

of the spectra, as SNR is proportional to the square root of the number of acquisitions 

(Kreis, 2004). It is therefore possible that subtle effects were hidden in the noise.  

From a biological perspective, glutamate changes measured with fMRS may arise from 

multiple processes, including synaptic release, astrocytic uptake, and metabolic cycling 

(Pasanta et al., 2023). Fast fluctuations likely reflect neurotransmission, whereas slower 

dynamics may be linked to clearance and recycling pathways. The coexistence of these 

mechanisms, occurring on different temporal scales, could partly explain the lack of  

a single, consistent glutamate response function in the present data. Moreover, recent 

modelling work suggests that fMRS does not directly capture neurotransmitter synthesis or 

degradation, but rather reflects shifts of glutamate and GABA between vesicular, 

extracellular, and cytosolic pools (Lea-Carnal et al., 2023). Such compartmental dynamics 

provide an additional source of variability that complicates the identification of a clear 

temporal profile of glutamate.  

Taken together, the findings offer only limited support for distinct temporal dynamics of 

glutamate. The lack of a consistent pattern likely reflects methodological challenges rather 

than the absence of a true neurochemical response. Future studies with improved temporal 

resolution and higher signal-to-noise ratio (e.g., through averaging more transients per time 

point), as well as more engaging stimulation paradigms, will be essential to establish the 

empirical shape of the glutamate response function. In this light, the present results 

illustrate both the potential and the challenges of using fMRS to characterize glutamate 

dynamics. 

4.5.  fMRS quality and field strength 

The last aim of the study was to compare data quality between two different MR scanners: 

an ultra-high-field 7T system (GE, DISCOVERY 950 MR System) and a standard 3T 

system (Siemens Trio). Based on theoretical considerations, the 7T scanner is expected to 

provide higher signal-to-noise ratio (SNR) and better spectral resolution, facilitating more 

accurate metabolite quantification. Despite these predicted advantages, data acquisition on 

ultra-high-field scanners involves technical challenges, such as more pronounced 

susceptibility distortions and higher radiofrequency power deposition, expressed as specific 

absorption rate (SAR) (Pradhan et al., 2015). Examination of data quality from both 
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scanners provides insights into whether the anticipated advantages justify these technical 

difficulties. 

Additionally, while 3T scanners are widely available, the 7T scanner used in this study is 

the only one in Poland and one of the few in this part of Europe. Data quality was assessed 

using parameters automatically calculated in FSL-MRS for spectra obtained by averaging 

all 320 transients. These parameters reflect key aspects of spectral quality, such as 

linewidth, full width at half maximum, signal-to-noise ratio, and Cramer-Rao lower 

bounds. For linewidth and full width at half maximum (FWHM) of N-acetylaspartate 

(NAA), values from the 3T system were recalculated to match the Larmor frequency of the 

7T system. Signal-to-noise ratio and percentage Cramer-Rao lower bounds (%CRLBs) 

were compared for NAA and glutamate, a metabolite frequently targeted in fMRS studies. 

Linewidth was better for the 3T scanner in the mPFC, while no statistically significant 

differences were observed in the STS. This suggests that, despite the higher field strength, 

the ultra-high-field scanner does not necessarily provide narrower linewidths, which may 

be influenced by technical factors such as a less efficient shimming system of the scanner 

or local tissue susceptibility distortions. Signal-to-noise ratio (SNR) for glutamate in the 

mPFC was higher for the 7T scanner, consistent with theoretical expectations of improved 

sensitivity at ultra-high fields. However, no other statistically significant SNR differences 

were observed. Notably, for NAA in the mPFC, SNR was higher for the 7T scanner, but 

this difference did not reach statistical significance. In the left superior temporal sulcus, 

SNR values were comparable for 3 and 7T for both glutamate and NAA, indicating that the 

benefit of higher field strength may be region-specific. Regarding %CRLB, which reflects 

quantification accuracy, data from the 7T scanner were generally better, achieving lower 

%CRLB for almost all comparisons. The only exception was %CRLB for NAA in the STS, 

which was not significantly improved at 7T. Interestingly, FWHM of NAA in the mPFC 

was narrower on the 3T scanner, which is in line with the linewidth results and suggests 

that, under certain conditions, 3T scanners may still provide competitive spectral resolution 

if optimally calibrated. 

Our results indicate that the advantage of ultra-high-field scanning is region-dependent: 

while the mPFC benefitted from higher SNR for glutamate at 7T, no such improvement 

was observed in the STS. This regional variability is in line with findings from Pradhan et 

al. (2015), who compared three brain regions (ACC, DLPFC, and CSO) and showed that 
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the superiority of 7T over 3T in terms of SNR and metabolite quantification precision was 

not uniform across locations. In their study, SNR was consistently higher at 7T, but the 

magnitude of improvement varied, with the weakest effect observed in a white matter 

voxel. They also reported lower CRLBs at 7T, which reflects greater accuracy in metabolite 

quantification. According to the authors, such variability was likely related to technical 

factors, including the sensitivity profile of phased array coils and stronger B1 

inhomogeneity at 7T, which reduces the benefits for deeper brain regions. 

Our finding that %CRLB values improved more consistently than linewidth or SNR agrees 

with earlier field-strength comparisons. Reliable quantification of a broader range of 

metabolites at 7T, particularly those with weaker or more complex spectral patterns  

(e.g., Gln, GSH, GABA, NAAG), has been reported, whereas abundant compounds such 

as NAA, tCr, and tCho showed only limited additional benefit (Terpstra et al., 2016).  

At the same time, SNR at 7T was found to be nearly twice that at 4T, but linewidths were 

about 50% broader, resulting in only modest gains in spectral resolution (Tkáč et al., 2009). 

Similarly, generally higher SNR and improved resolution at 7T, allowing more robust 

quantification of metabolites such as glutamate, glutamine, and lactate, have also been 

reported (Mekle et al., 2009). In our own comparison of the 7T and 3T datasets, we 

observed patterns consistent with these earlier findings. Specifically, glutamate 

quantification in the medial prefrontal cortex showed clear benefits at 7T, with improved 

%CRLB and SNR. However, in some cases 3T performed equally well or better, 

particularly in terms of linewidth and FWHM. 

Finally, other studies have emphasized that while 7T provides advantages in terms of SNR 

and quantification precision, 3T remains a robust and reliable option in longitudinal 

investigations due to its availability and consistent reproducibility. This perspective is 

consistent with our findings. While 7T yielded lower %CRLB values for glutamate, 3T 

nevertheless produced reliable and reproducible spectra that remain valuable in 

longitudinal investigations (Eftekhari et al., 2025). 

Another important factor is that the scanners differed not only in field strength, but also in 

vendor, which complicates direct comparison: the 7T scanner was made by GE, while the 

3T scanner was from Siemens. Although we implemented a standardized,  

vendor-independent semi-LASER sequence, the hardware and signal processing still differ 

between the scanners. In addition, the 7T scanner used in this study is experimental, so it 
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is not fully validated and has limited technical support. By contrast, the 3T scanner is  

a common, well-known model that has been used for many years and benefits from reliable 

technical support and a large user community. 

Magnetic field homogeneity was improved using advanced first- and second-order 

shimming algorithms on both scanners. However, the FAMASITO algorithm used on the 

GE scanner often failed to calculate appropriate shim values. In such cases, only zero- and 

first-order shims could be applied. This issue did not occur with the 3T scanner, where the 

FASTMAP algorithm for first- and second-order shimming was available. In theory, better 

shimming leads to improved magnetic field homogeneity and, consequently, higher quality 

of the acquired spectra. 

Importantly, we assessed the quality of spectra acquired on both the 7T and 3T scanners. 

To make the comparison fair, the linewidth threshold for 7T spectra (20 Hz) was 

recalculated for the 3T spectra, resulting in a corresponding threshold of 8.57 Hz. 

Establishing this common threshold was necessary because linewidth is a critical quality 

parameter and the scanners have different magnetic field strengths. The recommended 

linewidth for the 7T scanner is 19 Hz, and all our 7T spectra met this criterion. For the 3T 

spectra, the expert-recommended threshold is 13 Hz, but in this study we applied stricter 

criteria (Öz et al., 2021). These higher expectations for the 3T spectra could have influenced 

other quality parameters. Notably, none of the 3T spectra were excluded from the analysis 

based solely on linewidth. 

The observed differences in data quality suggest that the theoretical advantages of  

ultra-high-field spectra are not sufficient to recommend performing fMRS experiments 

exclusively on 7T scanners using the setup employed in this study. Another practical 

consideration is the higher SAR at 7T, which requires longer repetition times (TR). This, 

in turn, reduces both the number of signals that can be acquired during a fixed acquisition 

time and the temporal resolution of the experiment. Furthermore, longer scan durations 

increase the risk of motion-related artifacts, which can further compromise spectral quality. 

Overall, our findings underscore that while 7T provides measurable improvements in 

metabolite quantification, especially in terms of %CRLB, these benefits are not universal. 

They depend on both the anatomical region and the metabolite of interest, and must be 

carefully balanced against the practical challenges of ultra-high-field acquisition. 
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4.6.  Important factors and covariates in fMRS studies 

Participants’ sex is an important factor, but rarely considered in fMRS studies. From  

a neurochemical perspective, several studies have reported sex-specific differences in 

glutamatergic transmission within the prefrontal cortex. In humans, reviews of the literature 

indicate structural differences in synapses between females and males, with some studies 

reporting elevated glutamate levels in females (Kniffin & Briand, 2024). In animal models, 

reduced glutamatergic activity in the mPFC has been found in male mice compared to 

females (Knouse et al., 2022). Importantly, fMRS evidence indicates that women may show 

a stronger glutamatergic response to pain stimulation in the anterior cingulate cortex 

(Archibald et al., 2020), a region in close anatomical proximity to the mPFC. Finally,  

sex-based differences have also been documented in dyslexia, with evidence suggesting 

that males and females may present distinct cognitive and neural profiles (Yang et al., 2022; 

Krafnick & Evans, 2019). Our findings suggest that sex moderates task-evoked glutamate 

dynamics in both of the examined regions: the mPFC and the left STS. Although some of 

these effects were reduced after BOLD correction, generally we observed that females 

showed stronger responses than males to reading related stimulation. Overall these findings 

suggest that participants’ sex should be taken into account in future fMRS analyses, and 

the results observed in one sex cannot necessarily be generalized to both sexes.  

Age-related influences on metabolite concentrations are well established and underline the 

importance of controlling for age as a covariate in fMRS studies. Developmental studies 

consistently show that levels of creatine and choline increase from childhood into 

adulthood, while glutamate exhibits a negative age-related slope in several cortical regions, 

including occipital and prefrontal areas (Kossowski et al., 2019; Perica et al., 2022). These 

maturational effects are thought to reflect synaptic pruning (i.e., elimination of weaker or 

not used synaptic connections), reduced glutamatergic receptor density, and changes in the 

glutamate–glutamine cycle, as well as the ongoing refinement of excitation–inhibition 

balance across development (Perica et al., 2022). Moreover, GABA levels follow 

heterogeneous trajectories, with region-specific decreases during adolescence and early 

adulthood, suggesting that inhibitory processes also contribute to shifting neurochemical 

profiles. A recent systematic review highlighted that such developmental variability may 

partially explain inconsistencies between spectroscopy findings across studies and 

emphasized age as a potential confounding factor (Kiemes et al., 2021). Although the 
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current sample comprised participants within a relatively narrow age range, we observed  

a systematic negative effect of age on glutamate levels in both the mPFC and the left STS. 

Metabolite ratios were expressed relative to total creatine, which itself is known to increase 

with age (Kossowski et al., 2019). This approach may have therefore increased 

susceptibility to age-related bias. Taken together, these findings underscore that differences 

in participants’ age can significantly affect metabolite estimates, and that age should be 

systematically modeled in future fMRS research to avoid misinterpretation of 

neurochemical group effects. 

Another important confounding factor is the proportion of gray matter within the scanned 

voxel. Tissue composition can significantly affect metabolite estimates, as Glx 

concentrations are substantially higher in gray matter than in white matter (McLean et al., 

2000). This is further supported by evidence that, in small, well-localized MRS voxels, 

glutamate levels positively correlate with the gray matter fraction, whereas in larger voxels 

this relationship is not evident (DeMayo et al., 2023). Here, the effect of gray matter volume 

was consistently observed in the left STS, which was individually localized and therefore 

showed higher variation in the proportion of gray matter within the scanned voxel than the 

mPFC. These observations align with systematic reviews emphasizing that gray matter 

fraction should be included as a covariate to reduce variability across studies (Kiemes et 

al., 2021). Biologically, this makes sense, as most neurotransmitter-related metabolites 

accumulate in gray matter, while white matter and CSF contribute relatively little to the 

measured signal. These findings collectively highlight the importance of accounting for 

voxel tissue composition to avoid biased metabolite quantification and misinterpretation of 

group differences. 

4.7.  Limitations 

The glutamate response measured with fMRS is influenced by stimulation intensity. Ip et 

al. (2019) demonstrated that in the visual cortex both BOLD and glutamate signals scaled 

linearly with stimulus contrast, but a significant increase in glutamate concentration was 

only detected at the highest contrast level. This suggests that high-intensity stimulation may 

be necessary to elicit measurable neurochemical changes. In line with this, a meta-analysis 

of fMRS studies reported that the magnitude of glutamate responses varied substantially 

depending on the stimulation paradigm and modality, with visual stimulation typically 

yielding small effects (~2.3%), whereas stimuli such as pain could induce much larger 
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changes (~14.5%) (Mullins, 2018). These findings indicate that both the type and intensity 

of stimulation are critical determinants of the detectability of glutamate changes in fMRS. 

Perhaps, reading single words, even tough being a salient stimulus was not “intensive” 

enough for adolescents and adults and we should have employed sentenced instead. 

The temporal resolution of the paradigm may also influence the detectability of 

neurochemical responses. Long stimulation and rest blocks can blur transient fluctuations, 

whereas short blocks may fail to produce measurable changes. Here we opted for an event 

related paradigm, which short stimulation of 850 ms and trials from both conditions: words 

and false fonts intermixed within a stimulation block. Possibly, longer stimulation or block 

design could have produced larger glutamate response. Moreover, individual differences in 

reaction times and attentional engagement introduce temporal variability, which can further 

reduce the sensitivity of both averaged and dynamic analyses. These design-related factors 

should therefore be carefully considered in future fMRS studies. 

Results of this project showed some differences between the experiment conducted on the 

7T scanner and the one on the 3T scanner. These differences may partly arise from sample 

size. Most participants scanned at the lower-field scanner were also examined at 7T, but 

some additional participants took part only in the 3T experiment. In contrast, the 7T study 

was carried out on an extended sample, which could have influenced the results. The 

relatively small subgroup sizes (after dividing by group and sex) may have reduced 

statistical power and could have made comparisons more difficult. Additionally, at 3T 

glutamate and glutamine signals often overlap, whereas at 7T these metabolites can be more 

reliably distinguished. This methodological difference may complicate direct comparisons 

between field strengths. However, in the present project, strict quality criteria were applied 

to 3T spectra, linewidths were directly compared between 3T and 7T, which allowed 

glutamate estimates to be considered reliable. Another important factor is the 

reproducibility of fMRS experiments. The recently proposed Big fMRS Project aims to 

investigate the sources of variability in fMRS results by collecting data across multiple 

laboratories worldwide, using different scanners and participant samples, but applying 

exactly the same paradigm and acquisition parameters. This large-scale effort is expected 

to shed light on why results may differ even when the same paradigm is used, and to provide 

a basis for establishing consensus guidelines on how to acquire reliable dynamic MRS data. 
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Recently, dynamic approaches in fMRS analysis, where a common model is used for all 

transients simultaneously without averaging, have become popular (Clark et al., 2024, 

Craven et al., 2024). This method, based on a general linear model with a design matrix, 

allows researchers to model expected responses as well as confounding effects such as 

BOLD contributions or motion artefacts. A major advantage of dynamic analysis is the 

ability to better capture metabolite changes during stimulation and to more effectively 

account for possible vascular influences. However, in the present study the application of 

such an approach was highly challenging due to the complexity of the experimental design, 

which involved eight different types of MRS acquisitions. The scanning sessions were also 

very long (over 2 hours in total), making motion artefacts a serious concern. To address 

this, frequency shifts were extracted for each voxel and included as regressors in the design 

matrix. However, this approach has important limitations, as sudden head movements are 

not restricted to single transients but can shift the head to a new position, thereby affecting 

subsequent signals as well. There is no evidence that the frequency shift is able to capture 

variability in concentration related to subject’s movements within the model.  A potentially 

more accurate strategy would be to model each motion event (“unlike” signal) with  

a dedicated column in the design matrix. However, it remains unclear how to identify such 

unreliable data without an additional navigator scan or external measurement. When we 

attempted dynamic modeling on the 7T data, two issues raised concerns about the validity 

of the results. First, the estimated glutamate time courses appeared to closely follow one of 

the proposed regressors in a random manner, which seemed unlikely given the low SNR of 

single transients and suggested possible overfitting. Second, the dynamic analysis indicated 

lower glutamate concentrations during stimulation compared to rest, which was not 

consistent with the results obtained from the averaged analysis, in which the number of 

signals per group was equalized. This discrepancy could partly be explained by the long 

rest periods in the paradigm, leading to a higher number of transients acquired during rest 

compared to other groups. Averaging across participants might mitigate some of these 

problems, but individual variability in timing and susceptibility to motion artefacts could 

mask true effects. Future analyses could benefit from applying the Metropolis–Hastings 

(MH) algorithm, which provides a more robust iterative fitting framework. 

Direct modeling of the BOLD effect was not possible in this study, as no fMRI signal was 

acquired simultaneously with fMRS, and unsuppressed water scans interleaved with the 

functional task were not collected. To compensate for this limitation, a correction procedure 
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based on spectral broadening using the Cr FWHM was applied. This approach worked 

reliably for the ultra-high-field data, but for the 3T scanner some spectra could not be 

corrected due to technical reasons. For those spectra, we also tested NAA-based 

broadening, as NAA is typically the most prominent singlet in the spectra, but this approach 

did not resolve the problem either and failed to correct for the BOLD effect. Therefore, 

while the broadening procedure was designed to minimize vascular confounds, it cannot be 

excluded that it was ineffective or even introduced additional spectral distortions. To 

account for the BOLD effect before data averaging, it is advisable to measure it using water 

or an additional functional scan. Dynamic modeling would also benefit from the additional 

information about line broadening that is not directly related to changes in concentration. 

Voxel size in this experiment was 15 × 15 × 15 mm³, which can be considered relatively 

small for fMRS studies. The choice of a smaller voxel involves a trade-off. On the one 

hand, it reduces the SNR, which increases with larger voxel volumes. On the other hand,  

a smaller voxel improves shimming, resulting in narrower linewidths and partially 

compensating for the SNR loss (Wilson et al., 2019). Moreover, it allows for more accurate 

placement within gray matter. Importantly, the relatively small voxel enabled positioning 

in anatomically challenging regions such as the STS and the VWFA, minimizing lipid 

contamination from the skull and ensuring localization in functionally defined areas based 

on fMRI localizers. 

To minimize the impact of between-subject variability while focusing specifically on 

glutamate dynamics and maintaining consistency with the dynamic analysis, an averaged 

tCr reference across all time points was used (calculated separately for data grouped by 

stimulation type and by delay). This approach also facilitated direct comparison between 

the averaged and mixed dynamic–averaged analyses, where tCr was treated as a fixed 

parameter throughout the experiment. Nevertheless, using percentage signal change or  

an interleaved water reference would allow analysis of glutamate changes independent of 

other reference metabolites. 

A further limitation concerns the composition of the basis sets used for quantification. 

There is ongoing debate on how many and which metabolites should be included. Too few 

metabolites can result in higher residuals and misattribution of signals, whereas very large 

basis sets may increase the risk of splitting contributions between overlapping metabolites. 

This challenge has been emphasized previously (Hofmann et al., 2002). In our study, the 
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basis set for the 7T scanner was more extensive (27 metabolites) than for the 3T scanner 

(18 metabolites). Although 7T did not consistently provide narrower linewidths or higher 

SNR across regions, %CRLB values were generally lower, indicating more reliable 

quantification. This supports the use of a more complex basis set at 7T, since omitting 

relevant metabolites at this field strength could have led to systematic fitting errors and to 

signals being wrongly assigned to other metabolites. Nevertheless, the difference in basis 

set size between scanners remains a potential source of variability when interpreting  

cross-field comparisons. 

Tests conducted on the 3T scanner demonstrated that a TR of 3 seconds was sufficient to 

acquire good-quality fMRS data, while maintaining energy deposition within permissible 

limits. However, when the experiment was transferred to the 7T scanner, test runs revealed 

that for some participants the SAR exceeded safety thresholds, which caused the scanner 

to shut down despite the use of a semi-LASER sequence. Consequently, the repetition time 

had to be increased to achieve acceptable SAR values. This adjustment required  

a substantial modification of the original experimental paradigm, which had been designed 

to acquire 400 transients within a 20-minute acquisition. The longer TR reduced the total 

number of acquired spectra, thereby limiting the number of transients available for 

averaging at the group level. 

Despite the growing interest in fMRS, there are currently no expert consensus guidelines 

specifically addressing fMRS methodology. In recent years, several consensus documents 

have been published for standard MRS, including recommendations on motion artifact 

correction (Andronesi et al., 2021), magnetic resonance spectroscopic imaging (MRSI; 

Maudsley et al., 2021), edited MRS protocols for metabolites like GABA (Choi et al., 

2021), and reporting standards for MRS studies (Lin et al., 2021). However, none of these 

documents provide dedicated guidance for fMRS. Such guidelines would be highly 

beneficial for researchers navigating this complex field, offering support in areas such as 

managing BOLD-related confounds, selecting appropriate paradigm designs, optimizing 

acquisition timing based on metabolite dynamics, establishing quality control thresholds, 

and determining best practices for data analysis. 

In sum, the study underscores that detecting task-related glutamate changes in reading is 

challenging and strongly shaped by region, sex, field strength, and analytic strategy. Future 

progress will require standardized fMRS protocols, better BOLD correction, and 
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integration with other neuroimaging methods to clarify the neurochemical basis of reading 

and dyslexia. 
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5. Summary and conclusions 

To sum up the findings described in this thesis: 

• Task-related glutamate changes after reading stimuli were observed mainly in 

females, but these effects did not remain after BOLD correction. 

• No group differences were detected in the superior temporal sulcus, providing no 

support for the neuronal noise hypothesis. 

• Glutamate responses were not restricted to reading-related areas, but also in medial 

prefrontal cortex, underscoring the importance of including both task-relevant and 

control regions in fMRS studies. 

• Due to variability across sex, group, and stimulus type, a consistent glutamate 

response function could not be defined, likely because of insufficient data quality 

at analyzed time points. 

• Differences between 7T and 3T scanners were observed mainly in %CRLB values, 

while linewidth in the mPFC was better at 3T. 

• Sex-related interactions were evident, emphasizing the need to consider sex as  

a between-subject factor. 

• Age significantly influenced glutamate levels, highlighting the importance of 

controlling for developmental factors in future work. 

• Low data quality in the VWFA led to its exclusion, despite its high relevance for 

reading and potential to provide important insights. 
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