Kierownik pracowni

Pracownicy naukowi

Pracownicy techniczni i administracyjni


Profil badań

Astrocyty stanowią najliczniejszą grupę komórek glejowych w mózgu. Przez dekady uważane były za czysto homeostatyczny komponent ośrodkowego układu nerwowego. Pogląd ten jednak zmienił się diametralnie, w konsekwencji odkrycia aktywnego zaangażowania astrocytów w kontrole tworzenia i eliminacji synaps; obecne modele regulacji plastyczności mózgu włączają astrocyty jako jeden z centralnych czynników sterujących ilością synaps w mózgu. Co ciekawe, astrocyty zmieniły się znacząco w trakcie ewolucji ssaków. Na przykład, w porównaniu do gryzoni, ludzkie astrocyty sa większe a ich struktura znacząco bardziej skomplikowana. Ponadto, szlaki przekaźnictwa sygnałów wywołujące wewnątrzkomórkowe fale wapniowe wykazują się większą dynamiką w komórkach ludzkich niż w komórkach myszy lub szczura. Identyfikacja genetycznych podstaw funkcjonowania astrocytów jak i zmian w genomie, które odpowiadają za ewolucyjna modyfikacje biologii astrocytów to główne przedmioty badan naszego laboratorium. W tym celu, wykorzystujemy techniki biologii molekularnej opierające się na wysokoprzepustowym sekwencjonowaniu genomu. Posługujemy się RNA-seq do pomiaru aktywność genów. Używamy ChIP-seq, ATAC-seq oraz in-situ Hi-C do identyfikacji elementów regulatorowych, takich jak promotory, enhancery oraz insulatory, które kontrolują ekspresję genów w astrocytach ssaczych. Za pomocą technologii edycji genomu opierającej się na systemie CRISPR-Cas9, testujemy funkcjonalne konsekwencje perturbacji genów aktywnych w astrocytach oraz odkrytych przez nas elementów regulatorowych. Ponadto, jesteśmy zainteresowani mechanizmami kontroli trójwymiarowej struktury chromatyny oraz wpływem topologii jądra komórkowego na regulacje ekspresji genów. Więcej informacji na stronie laboratorium: https://pekowskalab.nencki.edu.pl/

Aktualna działalność badawcza

  • Modelizacja genetycznych sieci regulatorowych sterujących funkcjami astrocytów
  • Identyfikacja zmian w genomie odpowiadających za ewolucje astrocytów u ssaków
  • Zrozumienie roli trójwymiarowej struktury genomu w regulacji ekspresji genów
  • Rozwijanie narzędzi bioinformatycznych służących do analizy topologii genomu

Wybrane publikacje

Pękowska A.*, Klaus B, Xiang W., Severino J., Daigle N., Klein F.A., Oleś M., Casellas R., Ellenberg J., Steinmetz L.M.S., Bertone P.*, Huber W.* Gain of CTCF-anchored chromatin loops marks the exit from naive pluripotency. Cell Systems Nov. 28; 7(5):482-495. * corresponding authors

Vian L.#, Pękowska A.#, Rao SSR.#, Kieffer-Kwon K-R#, Jung S#, Baranello L., Huang SC., El Khattabi L., Dose M., Pruett N., Sanborn AL., Canela A., Maman Y., Oksanen A., Resch W., Li X., Lee B., Kovalchuk AL., Tang Z., Nelson S., Di Pierro M., Cheng RR., Machol I., St Hilaire BG., Durand NC., Shamim MS., Stamenova EK., Onuchic JN., Ruan Y., Nussenzweig A., Levens D., Aiden EL., Casellas R. The energetics and physiological impact of cohesin extrusion. Cell 2018 May 17;173(5):1165-1178.e20.

Schwarzer W.#, Abdennur N.#, Goloborodko A.#, Pękowska A., Fudenberg G., Loe-Mie Y., Fonseca N.A., Huber W, Haering C., Mirny L., Spitz F. Two independent modes of chromosome organization are revealed by cohesin removal. Nature 2017 Nov 2;551(7678):51-56

Pękowska A.#, Benoukraf T.#, Zacarias-Cabeza J.#, Belhocine M., Koch F., Holota H., Imbert J. Andrau JC., Ferrier P., Spicuglia S. H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 2011;(July):1–13.

Pękowska A., Benoukraf T., Ferrier P., Spicuglia S. A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Research, 2010 Nov; 20(11):1493–502.

 

# równy wkład
* autor korespondencyjny